期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adsorption Regularity and Characteristics of sp^3-Hybridized Gas Molecules on Anatase TiO_2(101) Surface
1
作者 辜永红 冯庆 +2 位作者 陈建军 李艳华 蔡从中 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第7期137-141,共5页
We report the anatase titanium dioxide (101) surface adsorption of sp3-hybridized gas molecules, including NH3, 1-12 0 and CH4, using first-principles plane-wave ultrasoft pseudopotential based on the density functi... We report the anatase titanium dioxide (101) surface adsorption of sp3-hybridized gas molecules, including NH3, 1-12 0 and CH4, using first-principles plane-wave ultrasoft pseudopotential based on the density functional theory. The results show that it is much easier for a surface with oxygen vacancies to adsorb gas molecules than it is for a surface without oxygen vacancies. The main factor affecting adsorption stability and energy is the polarizability of molecules, and adsorption is induced by surface oxygen vacancies of the negatively charged center. The analyses of state densities and charge population show that charge transfer occurs at the molecule surface upon adsorption and that the number of transferred charge reduces in the order of N, 0 and C. Moreover, the adsorption method is chemical adsorption, and adsorption stability decreases in the order of NH3, tt2 0 and CH4. Analyses of absorption and reflectance spectra reveal that after absorbed CH4 and H2 O, compared with the surface with oxygen vacancy, the optical properties of materials surface, including its absorption coefficients and reflectivity index, have slight changes, however, absorption coefficient and reflectivity would greatly increase after NH3 adsorption. These findings illustrate that anatase titanium dioxide (101) surface is extremely sensitive to NH3. 展开更多
关键词 of Adsorption Regularity and characteristics of sp3-Hybridized Gas molecules on Anatase TiO2 SURFACE NH is in on
下载PDF
Molecular characterization of organic matter transformation mediated by microorganisms under anoxic/hypoxic conditions 被引量:1
2
作者 Shicong XIAO Jiaxin CHEN +8 位作者 Yuan SHEN Qi CHEN Yu WANG Yunyun LI Chen HE Ruanhong CAI Quan SHI Nianzhi JIAO Qiang ZHENG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第4期894-909,共16页
Dissolved organic matter(DOM) in the ocean is one of the largest carbon pools on Earth. Microbial metabolism is an important process that shapes the marine DOM pool. Current studies on the interactions between microor... Dissolved organic matter(DOM) in the ocean is one of the largest carbon pools on Earth. Microbial metabolism is an important process that shapes the marine DOM pool. Current studies on the interactions between microorganisms and DOM focus mainly on oxic environments. Few studies have addressed the molecular characteristics of DOM in microbial-mediated transformation under anoxic/hypoxic conditions. As a result of deteriorating water quality due to eutrophication and global warming, anoxia occurs frequently in coastal waters. In this study, we performed an experiment to investigate changes in microbial community responses and the molecular characteristics of DOM in microbial-mediated transformation under hypoxic conditions. We compared microbial-mediated DOM transformation at different dissolved oxygen levels(7, 5, and 2 mg L^(-1)) and in different media(natural and artificial seawater with and without laminarin). We also investigated differences in DOM composition between groups using spectroscopic analysis and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. The results showed decreased microbial metabolic activity and delayed community succession at low oxygen(≤2 mg L^(-1)) in natural seawater supplemented with laminarin. The growth of strictly aerobic bacteria such as Pseudomonadaceae and Sphingomonadaceae was inhibited and the total organic carbon utilization rate was reduced by 36.9–46.7% from 4 to 32days. Moreover, tyrosine-like and tryptophan-like components were preserved, while DOM humification and modified aromaticity indices were significantly reduced under low oxygen conditions. This experiment provides justification for further study of the processes and mechanisms of improved labile DOM preservation in anoxic estuarine and coastal waters. 展开更多
关键词 Anoxic/hypoxic Microbial community structure Dissolved organic matter Chemical characteristics of molecule
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部