The yield stress of our newly developed electrorheological (ER) fluids consisting of dielectric nano-particles suspended in silicone oil reaches hundreds of kPa, which is orders of magnitude higher than that of conv...The yield stress of our newly developed electrorheological (ER) fluids consisting of dielectric nano-particles suspended in silicone oil reaches hundreds of kPa, which is orders of magnitude higher than that of conventional ones. We found that the polar molecules adsorbed on the particles play a decisive role in such new ER fluids. To explain this polar molecule dominated ER (PM-ER) effect a model is proposed based on the interaction of polar molecule-charge between the particles, where the local electric field is significantly enhanced and results in the polar molecules aligning in the direction of the electric field. The model can well explain the giant ER effect and a near-linear dependence of the yield stress on the electric field. The main effective factors for achieving high-performance PM-ER fluids are discussed. The PM-ER fluids with the yield stress higher than one MPa can be expected.展开更多
We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure...We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.展开更多
We propose a simple scheme for trapping cold polar molecules in low-field seeking states on the surface of a chip by using a grounded metal plate and two finite-length charged wires that half embanked in an insulating...We propose a simple scheme for trapping cold polar molecules in low-field seeking states on the surface of a chip by using a grounded metal plate and two finite-length charged wires that half embanked in an insulating substrate, calculate the electric field distributions generated by our charged-wire layout in free space and the corresponding Stark potentials for ND3 molecules, and analyze the dependence of the trapping center position on the geometric parameters. Moreover, the loading and trapping processes of cold ND3 molecules are studied by using the Monte Carlo method. Our study shows that the loading efficiency of the trap scheme can reach 11.5%, and the corresponding temperature of the trapped cold molecules is about 26.4 mK.展开更多
This paper proposes a scheme to guide cold polar molecules by using a single charged wire half embanked in an insulating substrate and a homogeneous bias electric field, which is generated by a plate capacitor compose...This paper proposes a scheme to guide cold polar molecules by using a single charged wire half embanked in an insulating substrate and a homogeneous bias electric field, which is generated by a plate capacitor composed of two infinite parallel metal plates. The spatial distributions of the electrostatic field produced by the combination of the charged wire and the plate capacitor and the corresponding Stark potentials (including dipole forces) for metastable CO molecules are calculated, the relationships between the electric field and the parameters of our charged-wire layout are analysed. It also studies the influences of the insulator on the electric field distribution and the discharge effect. This study shows that the proposed scheme can be used to guide cold polar molecules in the weak-field - seeking states, and to form various molecule-optical elements, such as molecular funnel, molecular beam-splitters and molecule interferometer, even to construct a variety of integrated molecule-optical elements and their molecule chips.展开更多
The collective excitations of spin states of an ensemble of polar molecules are studied as a candidate for high- fidelity quantum memory. To avoid the collisional properties of the molecules, they are arranged in dipo...The collective excitations of spin states of an ensemble of polar molecules are studied as a candidate for high- fidelity quantum memory. To avoid the collisional properties of the molecules, they are arranged in dipolar crystals under one or two dimensional trapping conditions. We calculate the lifetime of the quantum memory by identifying the dominant decoherence mechanisms and estimating their effects on gate operations when a molecular ensemble qubit is transferred to a microwave cavity.展开更多
We propose a novel scheme in which cold polar molecules are trapped by an electrostatic field generated by the combination of a pair of parallel transparent electrodes (i.e., two infinite transparent plates) and a r...We propose a novel scheme in which cold polar molecules are trapped by an electrostatic field generated by the combination of a pair of parallel transparent electrodes (i.e., two infinite transparent plates) and a ring electrode (i.e., a ring wire). The spatial distributions of the electrostatic fields from the above charged wire and the charged plates and the corresponding Stark potentials for cold CO molecules are calculated; the dependences of the trap centre position on the geometric parameters of the electrode are analysed. We also discuss the loading process of cold molecules from a cold molecular beam into our trap. This study shows that the proposed scheme is not only simple and convenient to trap, manipulate and control cold polar molecules in weak-field-seeking states, but also provides an opportunity to study cold collisions and collective quantum effects in a variety of cold molecular systems, etc.展开更多
The high harmonic generation (HHG) from the CS<sub>2</sub> molecule in intense laser fields is investigated using the extended Lewenstein method. The initial state is the highest-occupied molecular orbital...The high harmonic generation (HHG) from the CS<sub>2</sub> molecule in intense laser fields is investigated using the extended Lewenstein method. The initial state is the highest-occupied molecular orbital of the CS<sub>2</sub> molecule, which can be well described by Gaussian wave packet using GAMESS-UK package. Compared with the case of the elliptical laser, the HHG can be extended in two-color circularly polarized laser field. The time-frequency analysis and classical electron trajectory as well as the ionization yield curve are also presented to further explain the underlying mechanism. After adding a static electric field on the z-direction, the single quantum path control is realized and the supercontinuum spectra are obtained. Moreover, an isolated 110 as pulse can be obtained by superposing the harmonics from 130th to 180th order.展开更多
The ultracold polar molecules with the tunable dipole-dipole interaction, not only would enable explorations of a large class of exotic many-body physics phenomena, but also could be used for quantum information proce...The ultracold polar molecules with the tunable dipole-dipole interaction, not only would enable explorations of a large class of exotic many-body physics phenomena, but also could be used for quantum information processing. In the present paper we demonstrate that this dipole-dipole interaction can generate the degenerate chiral quantum states acting as a qubit robust against noise when the ultracold polar molecules are confined by a triangular lattice. Moreover, we also find two first-order quantum phase transitions by controlling an external driving t^eld. One is the transition with the change of the different degenerate chiral quantum states. The other is the transition with the breaking of the degenerate quantum chirAL states to the nondegenerate state. In experiment, these first-order quantum phase transitions can be detected by measuring the collective molecular population.展开更多
Three-dimensional(3D)driven optical lattices have attained great attention for their wide applications in the quest to engineer new and exotic quantum phases.Here we propose a 3D driven electric lattice(3D-DEL)for col...Three-dimensional(3D)driven optical lattices have attained great attention for their wide applications in the quest to engineer new and exotic quantum phases.Here we propose a 3D driven electric lattice(3D-DEL)for cold polar molecules as a natural extension.Our 3D electric lattice is composed of a series of thin metal plates in which two-dimensional square hole arrays are distributed.When suitable modulated voltages are applied to these metal plates,a 3D potential well array for polar molecules can be generated and can move smoothly back and forth in the lattice.Thus,it can drive cold polar molecules confined in the 3D electric lattice.Theoretical analyses and trajectory calculations using two types of molecules,ND3 and PbF,are performed to justify the possibility of our scheme.The 3D-DEL offers a platform for investigating cold molecules in periodic driven potentials,such as quantum computing science,quantum information processing,and some other possible applications amenable to the driven optical lattices.展开更多
A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help o...A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking NDa molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 inK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.展开更多
We extend the idea of laser cooling with adiabatic passage to multi-level type-Ⅱ transitions.We find the cooling force can be significantly enhanced when a proper magnetic field is applied.That is because the magneti...We extend the idea of laser cooling with adiabatic passage to multi-level type-Ⅱ transitions.We find the cooling force can be significantly enhanced when a proper magnetic field is applied.That is because the magnetic field decomposes the multi-level system into several two-level sub-systems,hence the stimulated absorption and stimulated emission can occur in order,allowing for the multiple photon momentum transfer.We show that this scheme also works on the laser-coolable molecules with a better cooling effect compared to the conventional Doppler cooling.A reduced dependence on spontaneous emission based on our scheme is observed as well.Our results suggest this scheme is very feasible for laser cooling of polar molecules.展开更多
文摘The yield stress of our newly developed electrorheological (ER) fluids consisting of dielectric nano-particles suspended in silicone oil reaches hundreds of kPa, which is orders of magnitude higher than that of conventional ones. We found that the polar molecules adsorbed on the particles play a decisive role in such new ER fluids. To explain this polar molecule dominated ER (PM-ER) effect a model is proposed based on the interaction of polar molecule-charge between the particles, where the local electric field is significantly enhanced and results in the polar molecules aligning in the direction of the electric field. The model can well explain the giant ER effect and a near-linear dependence of the yield stress on the electric field. The main effective factors for achieving high-performance PM-ER fluids are discussed. The PM-ER fluids with the yield stress higher than one MPa can be expected.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10674047,10804031,10904037,10904060,10974055,11034002,and61205198)the National Key Basic Research and Development Program of China(Grant Nos.2006CB921604 and 2011CB921602)+2 种基金the Basic Key Program of Shanghai Municipality,China(Grant No.07JC14017)the Fundamental Research Funds for the Central Universitiesthe Shanghai Leading Academic Discipline Project,China(Grant No.B408)
文摘We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674047, 10804031, 10904037, 10974055, 11034002, and 11274114), the National Basic Research Program of China (Grant Nos. 2006CB921604 and 2011 CB921602), the Basic Key Program of Shanghai Municipality of China (Grant No. 07JCI4017), and the Leading Academic Discipline Project of Shanghai Municipality of China (Grant No. 8408).
文摘We propose a simple scheme for trapping cold polar molecules in low-field seeking states on the surface of a chip by using a grounded metal plate and two finite-length charged wires that half embanked in an insulating substrate, calculate the electric field distributions generated by our charged-wire layout in free space and the corresponding Stark potentials for ND3 molecules, and analyze the dependence of the trapping center position on the geometric parameters. Moreover, the loading and trapping processes of cold ND3 molecules are studied by using the Monte Carlo method. Our study shows that the loading efficiency of the trap scheme can reach 11.5%, and the corresponding temperature of the trapped cold molecules is about 26.4 mK.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10174050, 10374029, 10434046 and 10674047) and the Science and Technology Commission of Shanghai Municipality, China (Grant No 04DZ14009), Shanghai Priority Academic Discipline and the 211 Foundation of the Educational Ministry of China.
文摘This paper proposes a scheme to guide cold polar molecules by using a single charged wire half embanked in an insulating substrate and a homogeneous bias electric field, which is generated by a plate capacitor composed of two infinite parallel metal plates. The spatial distributions of the electrostatic field produced by the combination of the charged wire and the plate capacitor and the corresponding Stark potentials (including dipole forces) for metastable CO molecules are calculated, the relationships between the electric field and the parameters of our charged-wire layout are analysed. It also studies the influences of the insulator on the electric field distribution and the discharge effect. This study shows that the proposed scheme can be used to guide cold polar molecules in the weak-field - seeking states, and to form various molecule-optical elements, such as molecular funnel, molecular beam-splitters and molecule interferometer, even to construct a variety of integrated molecule-optical elements and their molecule chips.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11004029 and 11174052)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2010422)+2 种基金the Ph.D.Program Foundation of Ministry of Education of Chinathe Excellent Young Teachers Program of Southeast University,Chinathe Major State Basic Research Development Program of China(Grant No.2011CB921203)
文摘The collective excitations of spin states of an ensemble of polar molecules are studied as a candidate for high- fidelity quantum memory. To avoid the collisional properties of the molecules, they are arranged in dipolar crystals under one or two dimensional trapping conditions. We calculate the lifetime of the quantum memory by identifying the dominant decoherence mechanisms and estimating their effects on gate operations when a molecular ensemble qubit is transferred to a microwave cavity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10174050, 10374029, 10434060 and 10674047), the National Basic Research Program of China (Grant No 2006CB921604), the Science and Technology Commission of Shanghai Municipality (Grant No 04DZ14009), Shanghai Priority Academic Discipline, the 211 Foundation of the Ministry of Education, China.
文摘We propose a novel scheme in which cold polar molecules are trapped by an electrostatic field generated by the combination of a pair of parallel transparent electrodes (i.e., two infinite transparent plates) and a ring electrode (i.e., a ring wire). The spatial distributions of the electrostatic fields from the above charged wire and the charged plates and the corresponding Stark potentials for cold CO molecules are calculated; the dependences of the trap centre position on the geometric parameters of the electrode are analysed. We also discuss the loading process of cold molecules from a cold molecular beam into our trap. This study shows that the proposed scheme is not only simple and convenient to trap, manipulate and control cold polar molecules in weak-field-seeking states, but also provides an opportunity to study cold collisions and collective quantum effects in a variety of cold molecular systems, etc.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574117,11271158,61575077 and 11575071
文摘The high harmonic generation (HHG) from the CS<sub>2</sub> molecule in intense laser fields is investigated using the extended Lewenstein method. The initial state is the highest-occupied molecular orbital of the CS<sub>2</sub> molecule, which can be well described by Gaussian wave packet using GAMESS-UK package. Compared with the case of the elliptical laser, the HHG can be extended in two-color circularly polarized laser field. The time-frequency analysis and classical electron trajectory as well as the ionization yield curve are also presented to further explain the underlying mechanism. After adding a static electric field on the z-direction, the single quantum path control is realized and the supercontinuum spectra are obtained. Moreover, an isolated 110 as pulse can be obtained by superposing the harmonics from 130th to 180th order.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10904092,10934004,60978018,11074154,61008012,and 11075099the ZJNSF under Grant No.Y6090001
文摘The ultracold polar molecules with the tunable dipole-dipole interaction, not only would enable explorations of a large class of exotic many-body physics phenomena, but also could be used for quantum information processing. In the present paper we demonstrate that this dipole-dipole interaction can generate the degenerate chiral quantum states acting as a qubit robust against noise when the ultracold polar molecules are confined by a triangular lattice. Moreover, we also find two first-order quantum phase transitions by controlling an external driving t^eld. One is the transition with the change of the different degenerate chiral quantum states. The other is the transition with the breaking of the degenerate quantum chirAL states to the nondegenerate state. In experiment, these first-order quantum phase transitions can be detected by measuring the collective molecular population.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11834003,91536218,and 11874151)the Fundamental Research Funds for the Central Universities,the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,and the Young Top-Notch Talent Support Program of Shanghai。
文摘Three-dimensional(3D)driven optical lattices have attained great attention for their wide applications in the quest to engineer new and exotic quantum phases.Here we propose a 3D driven electric lattice(3D-DEL)for cold polar molecules as a natural extension.Our 3D electric lattice is composed of a series of thin metal plates in which two-dimensional square hole arrays are distributed.When suitable modulated voltages are applied to these metal plates,a 3D potential well array for polar molecules can be generated and can move smoothly back and forth in the lattice.Thus,it can drive cold polar molecules confined in the 3D electric lattice.Theoretical analyses and trajectory calculations using two types of molecules,ND3 and PbF,are performed to justify the possibility of our scheme.The 3D-DEL offers a platform for investigating cold molecules in periodic driven potentials,such as quantum computing science,quantum information processing,and some other possible applications amenable to the driven optical lattices.
基金This work was supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11504318).
文摘A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking NDa molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 inK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.
基金the Natural Science Foundation of Zhejiang Province under Grant No.LZ18A040001the National Key R&D Program of China under Grant No.2018YFA0307200+2 种基金the National Natural Science Foundation of China under Grant No.12074337Zhejiang Province Plan for Science and Technology No.2020C01019the Fundamental Research Funds for the Central Universities.
文摘We extend the idea of laser cooling with adiabatic passage to multi-level type-Ⅱ transitions.We find the cooling force can be significantly enhanced when a proper magnetic field is applied.That is because the magnetic field decomposes the multi-level system into several two-level sub-systems,hence the stimulated absorption and stimulated emission can occur in order,allowing for the multiple photon momentum transfer.We show that this scheme also works on the laser-coolable molecules with a better cooling effect compared to the conventional Doppler cooling.A reduced dependence on spontaneous emission based on our scheme is observed as well.Our results suggest this scheme is very feasible for laser cooling of polar molecules.