期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Facile synthesis of nanoceria by a molten hydroxide method and its photocatalytic properties 被引量:4
1
作者 Xuewen Xia Yuanpei Lan +4 位作者 Junqi Li Chaoyi Chen Benjun Xu Xian Luo Xisong Mao 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第9期951-960,I0002,共11页
Ceria nanoparticles were facilely synthesized by a molten NaOH-KOH hydroxide flux method with the precursor of Ce(NO3)3·6H2O under different conditions in alumina crucibles or Teflon-lined stainless steel autocla... Ceria nanoparticles were facilely synthesized by a molten NaOH-KOH hydroxide flux method with the precursor of Ce(NO3)3·6H2O under different conditions in alumina crucibles or Teflon-lined stainless steel autoclave.The XRD patterns and TEM images show that both the crystal and particle sizes of synthesized nanoceria are around 10 nm.XPS results reveal that the nanoceria obtained in alumina crucible has a Ce3+fraction of 17.1%which is higher than that of ceria synthesized in the Teflon vessel,the FTIR spectra of nanoceria prepared in alumina crucible show a stronger intensity of O-H stretching mode.UV-DRS and PL spectra results show that the nanoceria synthesized in alumina crucible with a calculated band gap of 2.9 eV has a wider responding light wavelength and a lower photogene rated electron-hole recombination rate,due to a higher concentration of oxygen vacancies(Ce^3+%).The photocatalytic results show that the degradation ratio and rate of the Rhodamine B(RhB)solution with the nanoceria synthesized in alumina crucible are 98.39%and 0.02919 min-1,both of which are larger than those of the ceria obtained from Teflon vessel.This method proves to be a simple and scalable way to synthesize nanoceria with rich oxygen vacancies and high photocatalytic activity. 展开更多
关键词 Nanoceria SYNTHESIS molten hydroxide Oxygen vacancies PHOTOCATALYTIC Rare earths
原文传递
Catalytic action of rare earth oxide(La_(2)O_(3),CeO_(2),Pr_(6)O_(11))on electrochemical oxidation of activated carbon in molten KOH-NaOH 被引量:1
2
作者 Xiaofeng Li Yuanxing Dong +4 位作者 Xiaohui Liu Lijun Li Yanfang Gao Zhenzhu Cao Jinrong Liu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第7期1083-1090,共8页
The oxidation of anode carbon fuel directly affects the electrochemical performance of molten hydroxide direct carbon fuel cell(MHDCFC).In general,the anode carbon fuel can be oxidized at high temperature,thus the dir... The oxidation of anode carbon fuel directly affects the electrochemical performance of molten hydroxide direct carbon fuel cell(MHDCFC).In general,the anode carbon fuel can be oxidized at high temperature,thus the direct carbon fuel cell(DCFC)can show great electrochemical performance.In this study,rare earth oxides(La_(2)O_(3),CeO_(2),Pr_(6)O_(11))were prepared by the method of precipitation.Activated carbon was prepared by pretreatment of lignite.Rare earth oxides and activated carbon were mixed as anode carbon fuel,and rare earth oxides were used to catalyze the electrochemical oxidation of anode carbon fuel.The results show that CeO_(2)has better electrocatalytic activity compared with La_(2)O_(3)and Pr_(6)O_(11) in the MHDCFC.The electrochemical test results show that the current density(at 0.4 V)increases from 81.02 to 112.90 mA/cm^(2)and the maximum power density increases from 34.78 to 47.05 mW/cm^(2)at 450℃,when the mass fraction of CeO_(2)is increased from 0 to 40%.When the mass fraction of CeO_(2)is 30%,the current density(82.55 mA/cm^(2)at 0.4 V)at 400℃is higher than that(81.02 mA/cm^(2)at 0.4 V)without CeO_(2)at 450℃.The electrochemical oxidation mechanism of CeO_(2)catalyzed anode carbon fuel is discussed. 展开更多
关键词 Rare earth oxide Catalysis Activated carbon Electrochemical oxidation molten hydroxide direct carbon fuel cell
原文传递
Thermal defluorination behaviors of PFOS,PFOA and PFBS during regeneration of activated carbon by molten salt
3
作者 Zhichao Shen Lu Zhan Zhenming Xu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2022年第8期183-192,共10页
Current study proposes a green regeneration method of activated carbon(AC)laden with Perfluorochemicals(PFCs)from the perspective of environmental safety and resource regeneration.The defluorination efficiencies of AC... Current study proposes a green regeneration method of activated carbon(AC)laden with Perfluorochemicals(PFCs)from the perspective of environmental safety and resource regeneration.The defluorination efficiencies of AC adsorbed perfluorooctanesulfonate(PFOS),perfluorooctanoic acid(PFOA)and perfluorobutanesulfonate(PFBS)using three molten sodium salts and one molten alkali were compared.Results showed that defluorination efficiencies of molten NaOH for the three PFCs were higher than the other three molten sodium salts at lower temperature.At 700°C,the defluorination efficiencies of PFOS and PFBS using molten NaOH reached to 84.2%and 79.2%,respectively,while the defluorination efficiency of PFOA was 35.3%.In addition,the temperature of molten salt,the holding time and the ratio of salt to carbon were directly proportional to the defluorination efficiency.The low defluorination efficiency of PFOA was due to the low thermal stability of PFOA,which made it difficult to be captured by molten salt.The weight loss range of PFOA was 75°C–125°C,which was much lower than PFOS and PFBS(400°C–500°C).From the perspective of gas production,fluorine-containing gases produced from molten NaOH-treated AC were significantly reduced,which means that environmental risks were significantly reduced.After molten NaOH treatment,the regenerated AC had higher adsorption capacity than that of pre-treated AC. 展开更多
关键词 PFCS molten sodium hydroxide Thermal degradation Activated carbon regeneration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部