Elimination of phosphorus vaporizing from silicon was investigated. Si-P alloy made from electronic grade silicon was used. All the samples were analyzed by GD-MS. Theory calculation determines that phosphorus evapora...Elimination of phosphorus vaporizing from silicon was investigated. Si-P alloy made from electronic grade silicon was used. All the samples were analyzed by GD-MS. Theory calculation determines that phosphorus evaporates from molten silicon as gas species P and P2 at a finite reduced pressure. The experimental results show that phosphorus mass fraction can be decreased from 0.046% (460ppmw) to around 0.001% (10ppmw) under the condition of temperature 1 873 K, chamber pressure 0.6-0.8 Pa, holding time 1 h. Both experimental data and calculation results agree that at high phosphorus concentration, phosphorus removal is quite dependent on high chamber pressure while it becomes independent on low chamber pressure. The reason is that phosphorus evaporates from molten silicon as gas species P2 at a relatively high phosphorus concentration, while gas species P will be dominated in its vapour at low phosphorus content.展开更多
Effective lubrication under extreme conditions such as high temperature is of considerable importance to ensure the reliability of a mechanical system. New lubricants that can endure high temperatures should be studie...Effective lubrication under extreme conditions such as high temperature is of considerable importance to ensure the reliability of a mechanical system. New lubricants that can endure high temperatures should be studied and employed as alternatives to traditional oil-based lubricant. In this paper, a thermocapillary model of a silicone-oil droplet is developed by solving the Navier–Stokes and energy equations to obtain the flow, pressure, and temperature fields. This is accomplished using a conservative microfluidic two-phase flow level set method designed to track the interface between two immiscible fluids. The numerical simulation accuracy is examined by comparing the numerical results with experimental results obtained for a silicone-oil droplet. Hence, the movement and deformation of molten silicon droplets on graphite and corundum are numerically simulated. The results show that a temperature gradient causes a tension gradient on the droplet surface, which in turn creates a thermocapillary vortex. As the vortex develops, the droplet migrates to the low-temperature zone. In the initial stage, the molten silicon droplet on the corundum substrate forms two opposite vortex cells, whereas two pairs of opposite vortices are formed in the silicone fluid on the graphite substrate. Multiple vortex cells gradually develop into a single vortex cell, and the migration velocity tends to be stable. The greater the basal temperature gradient, the stronger the internal thermocapillary convection of the molten silicon droplet has, which yields higher speeds.展开更多
In recent years,silicon(Si)and germanium(Ge)materials have been considered as promising highperformance anode materials for lithium-ion batteries due to their high theoretical capacities.It is of great importance to d...In recent years,silicon(Si)and germanium(Ge)materials have been considered as promising highperformance anode materials for lithium-ion batteries due to their high theoretical capacities.It is of great importance to design and synthesize micro/nanostructured Si and Ge materials.In this work,we demonstrated that Si,Ge and SiGe micro/nanowires can be continuously synthesized from their oxides precursors through molten salt electrodeposition.The electrochemical synthesis processes have been investigated systematically,and the deposited Si,Ge and SiGe micro/nanowires have been characterized and compared.The results show that the micro/nanostructured Si and Ge materials with tunable morphology can be facilely and continuously produced via molten salt electrodeposition.The electrodeposition process generally includes calcium oxide-assisted dissolution and electrodeposition processes,and the morphologies of the deposited Si and Ge products can be controlled by varying conditions.Si micro/nanowires,Si films,Ge micro/nanowires,and Ge particles can be continuously synthesized in a controlled manner.展开更多
Using FFC-Cambridge Process to prepare Si from SiO2 is a promising method to prepare nanostructured and highly pure silicon for solar cells.However,the method still has many problems unsolved and the controlling effec...Using FFC-Cambridge Process to prepare Si from SiO2 is a promising method to prepare nanostructured and highly pure silicon for solar cells.However,the method still has many problems unsolved and the controlling effect of the cell voltage on silicon product is not clear.Here we report in this article that nano cluster-like silicon product with purity of 99.95%has been prepared by complete conversion of raw material SiO2,quartz glass plate,using constant cell voltage electrolysis FFC-Cambridge Process.By analysis of XRD,EDS,TEM,HRTEM and ICP-AES as well as the discussion from the thermodynamics calculation,the morphology and components of the product based on the change of cell voltage are clarified.It is clear that pure silicon could be prepared at the cell voltage of 1.7 2.1 V in this reaction system.The silicon material have cluster-like structure which are made of silicon nanoparticles in 20 100 nm size.Interestingly,the cluster-like nano structure of the silicon can be tuned by the used cell voltage.The purity,yield and the energy cost of silicon product prepared at the optimized cell voltage are discussed.The purity of the silicon product could be further improved,hence this method is promising for the preparation of solar grade silicon in future.展开更多
A mechanism of oxygen transportation in Czochralski growth of silicon crystals under a horizontal magnetic field (HMCZ) is proposed. Oxygen depleted surface melt, driven to the growth interface by the thermal Marangon...A mechanism of oxygen transportation in Czochralski growth of silicon crystals under a horizontal magnetic field (HMCZ) is proposed. Oxygen depleted surface melt, driven to the growth interface by the thermal Marangoni flow, determines oxygen concentration in the grown crystals. Systematic study was carried out to investigate effects of growth parameters on oxygen incorporation into crystals.展开更多
铁水硅含量是反映高炉冶炼过程中热状态变化的灵敏指示剂,但无法实时在线检测,造成铁水质量调控盲目.为此,提出一种基于动态注意力深度迁移网络(Attention deep transfer network, ADTNet)的高炉铁水硅含量在线预测方法.首先,针对传统...铁水硅含量是反映高炉冶炼过程中热状态变化的灵敏指示剂,但无法实时在线检测,造成铁水质量调控盲目.为此,提出一种基于动态注意力深度迁移网络(Attention deep transfer network, ADTNet)的高炉铁水硅含量在线预测方法.首先,针对传统深度网络静态建模思路无法准确描述过程变量与铁水硅含量之间的关系,提出一种基于注意力机制模块的输入过程变量与输出硅含量之间的动态关系描述方法;其次,为降低硅含量预测模型训练时对标签数据的依赖,考虑到铁水温度与硅含量数据之间的正相关性,利用小时级硅含量标签数据微调基于分钟级铁水温度数据预训练好的深度模型的结构,进而提高基于动态注意力深度迁移网络的硅含量预测精度;同时,为增强预测网络的可解释性,实时给出了基于动态注意力机制模块计算的每个样本各过程变量对铁水硅含量的贡献度;最后,基于某钢铁厂2号高炉的工业实验,验证了该方法的准确性、有效性和先进性.展开更多
基金Project (2007J0012) supported by the Natural Science Foundation of Fujian Province, ChinaProject (2007HZ0005-2) supported by the Key Technological Program of Fujian Province, ChinaProject (BASIC-10341702) supported by Norwegian Research Council
文摘Elimination of phosphorus vaporizing from silicon was investigated. Si-P alloy made from electronic grade silicon was used. All the samples were analyzed by GD-MS. Theory calculation determines that phosphorus evaporates from molten silicon as gas species P and P2 at a finite reduced pressure. The experimental results show that phosphorus mass fraction can be decreased from 0.046% (460ppmw) to around 0.001% (10ppmw) under the condition of temperature 1 873 K, chamber pressure 0.6-0.8 Pa, holding time 1 h. Both experimental data and calculation results agree that at high phosphorus concentration, phosphorus removal is quite dependent on high chamber pressure while it becomes independent on low chamber pressure. The reason is that phosphorus evaporates from molten silicon as gas species P2 at a relatively high phosphorus concentration, while gas species P will be dominated in its vapour at low phosphorus content.
基金support from the Key Program of the National Natural Science Foundation of China(Grant No.51335002)support projects of strategic emerging industries in Jiangsu Province(Grant No.2015-318)
文摘Effective lubrication under extreme conditions such as high temperature is of considerable importance to ensure the reliability of a mechanical system. New lubricants that can endure high temperatures should be studied and employed as alternatives to traditional oil-based lubricant. In this paper, a thermocapillary model of a silicone-oil droplet is developed by solving the Navier–Stokes and energy equations to obtain the flow, pressure, and temperature fields. This is accomplished using a conservative microfluidic two-phase flow level set method designed to track the interface between two immiscible fluids. The numerical simulation accuracy is examined by comparing the numerical results with experimental results obtained for a silicone-oil droplet. Hence, the movement and deformation of molten silicon droplets on graphite and corundum are numerically simulated. The results show that a temperature gradient causes a tension gradient on the droplet surface, which in turn creates a thermocapillary vortex. As the vortex develops, the droplet migrates to the low-temperature zone. In the initial stage, the molten silicon droplet on the corundum substrate forms two opposite vortex cells, whereas two pairs of opposite vortices are formed in the silicone fluid on the graphite substrate. Multiple vortex cells gradually develop into a single vortex cell, and the migration velocity tends to be stable. The greater the basal temperature gradient, the stronger the internal thermocapillary convection of the molten silicon droplet has, which yields higher speeds.
基金the Shanghai Rising-Star Program(19QA1403600)the National Natural Science Foundation of China(Nos.51974181+2 种基金51574164)the Iron and Steel Joint Research Found of National Natural Science Foundation and China Baowu Steel Group Corporation Limited(U1860203)the authors also thank the CAS Interdisciplinary In novation Team for financial support.
文摘In recent years,silicon(Si)and germanium(Ge)materials have been considered as promising highperformance anode materials for lithium-ion batteries due to their high theoretical capacities.It is of great importance to design and synthesize micro/nanostructured Si and Ge materials.In this work,we demonstrated that Si,Ge and SiGe micro/nanowires can be continuously synthesized from their oxides precursors through molten salt electrodeposition.The electrochemical synthesis processes have been investigated systematically,and the deposited Si,Ge and SiGe micro/nanowires have been characterized and compared.The results show that the micro/nanostructured Si and Ge materials with tunable morphology can be facilely and continuously produced via molten salt electrodeposition.The electrodeposition process generally includes calcium oxide-assisted dissolution and electrodeposition processes,and the morphologies of the deposited Si and Ge products can be controlled by varying conditions.Si micro/nanowires,Si films,Ge micro/nanowires,and Ge particles can be continuously synthesized in a controlled manner.
基金supported by the Solar Energy Initiative of the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KGCX2-YW-395)
文摘Using FFC-Cambridge Process to prepare Si from SiO2 is a promising method to prepare nanostructured and highly pure silicon for solar cells.However,the method still has many problems unsolved and the controlling effect of the cell voltage on silicon product is not clear.Here we report in this article that nano cluster-like silicon product with purity of 99.95%has been prepared by complete conversion of raw material SiO2,quartz glass plate,using constant cell voltage electrolysis FFC-Cambridge Process.By analysis of XRD,EDS,TEM,HRTEM and ICP-AES as well as the discussion from the thermodynamics calculation,the morphology and components of the product based on the change of cell voltage are clarified.It is clear that pure silicon could be prepared at the cell voltage of 1.7 2.1 V in this reaction system.The silicon material have cluster-like structure which are made of silicon nanoparticles in 20 100 nm size.Interestingly,the cluster-like nano structure of the silicon can be tuned by the used cell voltage.The purity,yield and the energy cost of silicon product prepared at the optimized cell voltage are discussed.The purity of the silicon product could be further improved,hence this method is promising for the preparation of solar grade silicon in future.
文摘A mechanism of oxygen transportation in Czochralski growth of silicon crystals under a horizontal magnetic field (HMCZ) is proposed. Oxygen depleted surface melt, driven to the growth interface by the thermal Marangoni flow, determines oxygen concentration in the grown crystals. Systematic study was carried out to investigate effects of growth parameters on oxygen incorporation into crystals.
文摘铁水硅含量是反映高炉冶炼过程中热状态变化的灵敏指示剂,但无法实时在线检测,造成铁水质量调控盲目.为此,提出一种基于动态注意力深度迁移网络(Attention deep transfer network, ADTNet)的高炉铁水硅含量在线预测方法.首先,针对传统深度网络静态建模思路无法准确描述过程变量与铁水硅含量之间的关系,提出一种基于注意力机制模块的输入过程变量与输出硅含量之间的动态关系描述方法;其次,为降低硅含量预测模型训练时对标签数据的依赖,考虑到铁水温度与硅含量数据之间的正相关性,利用小时级硅含量标签数据微调基于分钟级铁水温度数据预训练好的深度模型的结构,进而提高基于动态注意力深度迁移网络的硅含量预测精度;同时,为增强预测网络的可解释性,实时给出了基于动态注意力机制模块计算的每个样本各过程变量对铁水硅含量的贡献度;最后,基于某钢铁厂2号高炉的工业实验,验证了该方法的准确性、有效性和先进性.