期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation of Periclase-forsterite Lightweight Heat-insulating Refractories by Molten Salt Method
1
作者 WANG Shaoyang HOU Qingdong +3 位作者 QI Xin LUO Xudong YOU Jiegang ZHANG Ling 《China's Refractories》 CAS 2023年第4期33-37,共5页
Low grade magnesite is one of the main research directions in the future as the raw material for the preparation of magnesia based insulating refractories.Periclase-forsterite(MgO-Mg_(2)SiO_(4)) lightweight insulating... Low grade magnesite is one of the main research directions in the future as the raw material for the preparation of magnesia based insulating refractories.Periclase-forsterite(MgO-Mg_(2)SiO_(4)) lightweight insulating refractories were prepared by the molten salt method with high silica magnesite and tertiary talc ore as raw materials by pretreating them to get light burnt magnesia and talc,and NaCl molten salt as the reaction medium.The effects of the NaCl addition,the sintering temperature,the holding time and the raw material ratio on the sample preparation were studied.The results show that when the NaCl addition is 20% of the mass of light burnt magnesia and talc mixture,the sintering temperature is 1 200 ℃,the holding time is 6 h,and m(light burnt magnesia):m(talc)=5:5,the sample has the optimal comprehensive properties:the bulk density of 1.46 g·cm^(-3) and the apparent porosity of 55.0%.In addition,it is found that self-decomposition of talc and the formation of forsterite can form pores inside the sample. 展开更多
关键词 sodium chloride molten salt PERICLASE FORSTERITE lightweight insulating material
下载PDF
Effects of Different Carbon Sources and NaBr-KCl on Synthesis of Ti(C,N)
2
作者 CHEN Xilai LI Yuanbing +2 位作者 ZHANG Renhua LI Yawei LI Jun 《China's Refractories》 CAS 2008年第4期5-10,共6页
Ti( C, N) was synthesized with the starting materials of 76. 9% titania white and 23. 1% carbon black (graphite or activated carbon ), or 40% titania white and 60% amylum, with or without 10% NaBr - KCl, dry mould... Ti( C, N) was synthesized with the starting materials of 76. 9% titania white and 23. 1% carbon black (graphite or activated carbon ), or 40% titania white and 60% amylum, with or without 10% NaBr - KCl, dry moulding and carbon embedded firing at i 300 ℃ and 1 400 ℃ for 3 h, respectively. Phase composition and microstructure of the synthesized Ti (C, N) were analyzed by XRD, SEM and EPMA. Effects of different carbon sources and NaBr-KCl on the synthesis of Ti( C, N) were investigated. The results show that: (1) Ti (C, N) can be synthesized by using carbon black, graphite, activated carbon or amylum as carbon source separately; (2) Additive NaBr - KCl is more favorable for accelerating the carbothermal reduction reaction using carbon black or amylum as carbon source; (3) In the presence of NaBr - KCl, particle size of the synthesized Ti( C, N) is 5 -8μm using carbon black as carbon source fired at 1 300 ℃ for 3 h, while that is only 1 - 3 μm using graphite, activated carbon or amylum fired at 1 400 ℃ for 3 h. 展开更多
关键词 Titanium carbonitride sodium bromide -potassium chloride molten salt Carbon source Carbo-thermal reduction method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部