MoSi2 is presently regarded as the most important material for electrical heating and as one with huge potential for high temperature structural uses. MoSi2 and MoSi2 matrix composites were prepared by self-propagatin...MoSi2 is presently regarded as the most important material for electrical heating and as one with huge potential for high temperature structural uses. MoSi2 and MoSi2 matrix composites were prepared by self-propagating high temperature synthesis (SHS). Pure MoSi2 was obtained and a compound of MoSi2 and WSi2was synthesized in the form of predominant solid solution (Mo,W)Si2. By adding aluminum of 5.5 at.% to Mo-Si, the crystal structure of MoSi2 changed into a mixture of tetragonal Cllb MoSi2and hexagonal C40 Mo(Si,Al)2. The (Mo,W)Si2-Mo(Si,Al)2-W(Si,Al)2 composite materials were synthesized by adding aluminum of 5.5 at.% to Mo-W-Si. However, if the amount of the added aluminum was not larger than 2.5 at.%, it did not have any significant effect. SHS is an effective technology for synthesis of MoSi2 and MoSi2 matrix composites.展开更多
Industrial spent MoSi_(2)-based materials were used to fabricate oxidation-resistant coatings on molybdenum via slurry painting in air. The microstructure, phase constituent and high-temperature oxidation behaviors of...Industrial spent MoSi_(2)-based materials were used to fabricate oxidation-resistant coatings on molybdenum via slurry painting in air. The microstructure, phase constituent and high-temperature oxidation behaviors of the coatings at 1500 ℃ were explored. The results show that the bonding layer is generated in the coatings after sintering,which strengthens the metallurgical combination between the coating and the substrate because of the formation of diffusion layers. Rare cracks appear in the coating using pure MoSi_(2)(PM coating) while the coating using spent MoSi_(2)(SM coating) is free of cracks due to decreased thermal expansion mismatch. After oxidation, the oxide scale of PM coating possesses large-sized pores while a relatively dense oxide scale is acquired by SM coating. Compared with PM coating, thinner glassy oxide scale with lower mass gain is obtained by SM coating, exhibiting better anti-oxidation properties at 1500 ℃.展开更多
基金This project was financially supported by the National Natural Science Foundation of China (No. 50025412)
文摘MoSi2 is presently regarded as the most important material for electrical heating and as one with huge potential for high temperature structural uses. MoSi2 and MoSi2 matrix composites were prepared by self-propagating high temperature synthesis (SHS). Pure MoSi2 was obtained and a compound of MoSi2 and WSi2was synthesized in the form of predominant solid solution (Mo,W)Si2. By adding aluminum of 5.5 at.% to Mo-Si, the crystal structure of MoSi2 changed into a mixture of tetragonal Cllb MoSi2and hexagonal C40 Mo(Si,Al)2. The (Mo,W)Si2-Mo(Si,Al)2-W(Si,Al)2 composite materials were synthesized by adding aluminum of 5.5 at.% to Mo-W-Si. However, if the amount of the added aluminum was not larger than 2.5 at.%, it did not have any significant effect. SHS is an effective technology for synthesis of MoSi2 and MoSi2 matrix composites.
基金financially supported by the National Natural Science Foundation of China (Nos. 51874305, 51972338)Graduate Research and Innovation Projects of Jiangsu Province, China (No. KYCX21_22413)。
文摘Industrial spent MoSi_(2)-based materials were used to fabricate oxidation-resistant coatings on molybdenum via slurry painting in air. The microstructure, phase constituent and high-temperature oxidation behaviors of the coatings at 1500 ℃ were explored. The results show that the bonding layer is generated in the coatings after sintering,which strengthens the metallurgical combination between the coating and the substrate because of the formation of diffusion layers. Rare cracks appear in the coating using pure MoSi_(2)(PM coating) while the coating using spent MoSi_(2)(SM coating) is free of cracks due to decreased thermal expansion mismatch. After oxidation, the oxide scale of PM coating possesses large-sized pores while a relatively dense oxide scale is acquired by SM coating. Compared with PM coating, thinner glassy oxide scale with lower mass gain is obtained by SM coating, exhibiting better anti-oxidation properties at 1500 ℃.