Keggin-type molybdovanadophosphoric acids (HPA), H4PMo11VO40 (1), H5PMo10V2O40 (2) and H6PMo9V3O40 (3) were anchored onto γ-aminopropyltriethoxysilane (APTS) aminosilylated silica mesoporous SBA-15 through ...Keggin-type molybdovanadophosphoric acids (HPA), H4PMo11VO40 (1), H5PMo10V2O40 (2) and H6PMo9V3O40 (3) were anchored onto γ-aminopropyltriethoxysilane (APTS) aminosilylated silica mesoporous SBA-15 through acid-base neutralization and the resulting HPA/APTS/SBA-15 were characterized by BET, TEM, XRD, ICP, FFIR and ^31p MAS NMR. The characterization results indicate that the Keggin-structure of these HPAs is preserved within the mesoporous silica host. The samples were tested for catalytic aerobic oxidation of acetaldehyde heterogeneously in liquid phase under ambient condition. The electrostatic force between heteropoly acid and amino groups grafted on the silica channel surface leads to strong immobilization of HPA inside SBA-15 which is against the leaching during the reaction. The good catalytic performance and easy recycle of these catalysts make them as potential environmental friendly catalysts for elimination of indoor air pollutants.展开更多
In this work,a series of molybdovanadophosphoric heteropoly acid quaternary ammonium salts H_(3+x)PMo_(12 -x)V_xO40-T were synthesized and employed as a reaction inhibitor in the selfpolymerization of methyl meth...In this work,a series of molybdovanadophosphoric heteropoly acid quaternary ammonium salts H_(3+x)PMo_(12 -x)V_xO40-T were synthesized and employed as a reaction inhibitor in the selfpolymerization of methyl methacrylate(MMA).The polymerization inhibition effect of H_(3+x)PMoPMo_(12 -x)V_xO40-T)with different number of vanadium atoms and reaction dosages was investigated using differential scanning calorimetry(DSC).It shows that the inhibitory effect was improved with the increasing dosages of H_(3+x)PMoPMo_(12 -x)V_xO40-T),and the polymerization inhibition was also affected by the number of vanadium atoms in the H_(3+x)PMo_(12 -x)V_xO40-T .Furthermore,cyclic voltammograms(CV)was used to probe the mechanism of the inhibition reaction with H3+xPMo12xVxO40-T.The result of CV indicates that the inhibition reaction is an oxidation–reduction reaction.H_(3+x)PMo_(12 -x)V_xO40-T can react directly with the MMA monomer radicals,which eliminated the MMA monomers,and therefore the self-polymerization of the MMA can be effectively inhibited by H_(3+x)PMo_(12 -x)V_xO40-T.展开更多
基金Project supported by the National Natural Science Foundation Committee of China (Nos. 20371013, 20273017, 20421303) and the Major State Basic Research Development Program of China (No. 2003CB615807).
文摘Keggin-type molybdovanadophosphoric acids (HPA), H4PMo11VO40 (1), H5PMo10V2O40 (2) and H6PMo9V3O40 (3) were anchored onto γ-aminopropyltriethoxysilane (APTS) aminosilylated silica mesoporous SBA-15 through acid-base neutralization and the resulting HPA/APTS/SBA-15 were characterized by BET, TEM, XRD, ICP, FFIR and ^31p MAS NMR. The characterization results indicate that the Keggin-structure of these HPAs is preserved within the mesoporous silica host. The samples were tested for catalytic aerobic oxidation of acetaldehyde heterogeneously in liquid phase under ambient condition. The electrostatic force between heteropoly acid and amino groups grafted on the silica channel surface leads to strong immobilization of HPA inside SBA-15 which is against the leaching during the reaction. The good catalytic performance and easy recycle of these catalysts make them as potential environmental friendly catalysts for elimination of indoor air pollutants.
基金supported by the Research and Development Fund for the postdoctoral researchers of Heilongjiang Province (2012)
文摘In this work,a series of molybdovanadophosphoric heteropoly acid quaternary ammonium salts H_(3+x)PMo_(12 -x)V_xO40-T were synthesized and employed as a reaction inhibitor in the selfpolymerization of methyl methacrylate(MMA).The polymerization inhibition effect of H_(3+x)PMoPMo_(12 -x)V_xO40-T)with different number of vanadium atoms and reaction dosages was investigated using differential scanning calorimetry(DSC).It shows that the inhibitory effect was improved with the increasing dosages of H_(3+x)PMoPMo_(12 -x)V_xO40-T),and the polymerization inhibition was also affected by the number of vanadium atoms in the H_(3+x)PMo_(12 -x)V_xO40-T .Furthermore,cyclic voltammograms(CV)was used to probe the mechanism of the inhibition reaction with H3+xPMo12xVxO40-T.The result of CV indicates that the inhibition reaction is an oxidation–reduction reaction.H_(3+x)PMo_(12 -x)V_xO40-T can react directly with the MMA monomer radicals,which eliminated the MMA monomers,and therefore the self-polymerization of the MMA can be effectively inhibited by H_(3+x)PMo_(12 -x)V_xO40-T.