A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using...A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using the well-known EBU-Arrhenius model and the original second-order moment model. The comparison shows the advantage of the new model that it requires almost the same computational storage and time as that of the original second-order moment model, but its modeling results are in better agreement with experiments than those using other models. Hence, the new second-order moment model is promising in modeling turbulent combustion with NOx formation with finite reaction rate for engineering application.展开更多
A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the b...A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the bubble and liquid velocities, bubble volume fraction, bubble and liquid Reynolds stresses and bubble-liquidvelocity correlation. For predicted two-phase velocities and bubble volume fraction there is only slight differencebetween these two models, and the simulation results using both two models are in good agreement with the particleimage velocimetry (PIV) measurements. Although the predicted two-phase Reynolds stresses using the FSM are insomewhat better agreement with the PIV measurements than those predicted using the ASM, the Reynolds stressespredicted using both two models are in general agreement with the experiments. Therefore, it is suggested to usethe ASM two-phase turbulence model in engineering application for saving the computation time.展开更多
The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collisi...The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θ model in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θ model has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θ model was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.展开更多
In continuous casting rolling process, the deformed body is different from the hot rolling strip. The metal in casting rolling zone is first assumed to be viscous fluid and the mathematical model of casting rolling fo...In continuous casting rolling process, the deformed body is different from the hot rolling strip. The metal in casting rolling zone is first assumed to be viscous fluid and the mathematical model of casting rolling force is established, then the calculating formula for casting rolling torque is derived. In addition, considering the effects of deforming cone and appendant torque of rotary junctions sealing ring, the calculating model which accords with casting rolling condition is found out. Theoretical formula is proved by experiment.展开更多
Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed pha...Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed phase turbulence,is the key problem in the Eulerian-Eulerian simulation of practical dispersed multiphase flows.Although different models were developed and used,the experimental validation shows that they cannot always give satisfactory prediction results.In this paper the present author give a detailed review of the unified second-order moment (USM),k-k p and nonlinear k-k p two-phase turbulence models,proposed by him.The derivation and closure of these models are described in detail and the experimental validation and application of these models are extensively discussed.展开更多
Dense gas-particle flows are frequently encountered in fluidized beds,riser and downer reactors,pneumatic transport and the near-wall zone of dilute gas-particle flows.Particle-particle collision plays an important ro...Dense gas-particle flows are frequently encountered in fluidized beds,riser and downer reactors,pneumatic transport and the near-wall zone of dilute gas-particle flows.Particle-particle collision plays an important role in the behavior of two-phase flows.In this paper a USM-Q two-phase turbulence model for dense gas-particle flows is proposed to account for both two-phase turbulence and inter-particle collision.For two-fluid large-eddy simulation of gas-particle flows,the author proposed a unified second-order moment(USM) two-phase SGS stress model and a two-phase k-kp SGS energy-equation stress model.The proposed models can fully account for the interaction between the gas and particle SGS stresses.展开更多
A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale flu...A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision and through a unified treatment of these two kinds of fluctuations. The proposed model is used to simulate gas-particle flows in a channel and in a downer. Simulation results are in agreement with the experimental results reported in references and are near the results obtained using the sin- gle-scale second-order moment two-phase turbulence model superposed with a particle collision model (USM-θ model) in most regions.展开更多
We propose that the QCD vacuum pion tetrahedron condensate density vary in space and drops to extremely low values in the Kennan, Barger and Cowie (KBC) void in analogy to earth’s atmospheric density drop with elevat...We propose that the QCD vacuum pion tetrahedron condensate density vary in space and drops to extremely low values in the Kennan, Barger and Cowie (KBC) void in analogy to earth’s atmospheric density drop with elevation from earth. We propose a formula for the gravitation acceleration based on the non-uniform pion tetrahedron condensate. Gravity may be due to the underlying microscopic attraction between quarks and antiquarks, which are part of the vacuum pion tetrahedron condensate. We propose an electron tetrahedron model, where electrons are comprised of tetraquark tetrahedrons, and . The quarks determine the negative electron charge and the or quarks determine the electron two spin states. The electron tetrahedron may perform a high frequency quark exchange reactions with the pion tetrahedron condensate by tunneling through the condensation gap creating a delocalized electron cloud with a fixed spin. The pion tetrahedron may act as a QCD glue bonding electron pairs in atoms and molecules and protons to neutrons in the nuclei. Conservation of valence quarks and antiquarks is proposed.展开更多
A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concept of particle large-scale fluctuation due to turbulence and particle small-scale fluc...A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concept of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision. The proposed model is used to simulate gas-particle downer reactor flows. The computational results of both particle volume fraction and mean velocity are in agreement with the experimental results. After analyzing effects of empirical coefficient on prediction results, we can come to a conclusion that, inside the limit range of empirical coefficient, the predictions do not reveal a large sensitivity to the empirical coefficient in the downer reactor, but a relatively great change of the constants has important effect on the prediction.展开更多
In this paper, an attitude maneuver control problem is investigated for a rigid spacecraft using an array of two variable speed control moment gyroscopes (VSCMGs) with gimbal axes skewed to each other. A mathematica...In this paper, an attitude maneuver control problem is investigated for a rigid spacecraft using an array of two variable speed control moment gyroscopes (VSCMGs) with gimbal axes skewed to each other. A mathematical model is constructed by taking the spacecraft and the gyroscopes together as an integrated system, with the coupling interaction between them considered. To overcome the singular issues of the VSCMGs due to the conventional torque-based method, the first-order derivative of gimbal rates and the second-order derivative of the rotor spinning velocity, instead of the gyroscope torques, are taken as input variables. Moreover, taking external disturbances into account, a feedback control law is designed for the system based on a method of nonlinear model predictive control (NMPC). The attitude maneuver can be realized fast and smoothly by using the proposed controller in this paper.展开更多
In this paper, we investigate the solution moment stability for a Harrison-type predator-prey model with parametric dichotomous noises. Using the Shapiro-Loginov formula, the equations for the first-order and second-o...In this paper, we investigate the solution moment stability for a Harrison-type predator-prey model with parametric dichotomous noises. Using the Shapiro-Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses.展开更多
A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LA...A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model's capability to simulate aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces a reasonable rep- resentation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in situ observations. The longwave and shortwave cloud forcings are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous ice nucleation formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. ~rthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that the impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account.展开更多
A range of powdered Bi:2 212 samples exhibiting the paramagnetic Meissner effect (PME) are systematically examined. Interpretation of the results is made in terms of a phenomenological model in which there is a concen...A range of powdered Bi:2 212 samples exhibiting the paramagnetic Meissner effect (PME) are systematically examined. Interpretation of the results is made in terms of a phenomenological model in which there is a concentration within the material of small local moments that can be polarized during a field cooling. Information about the magnitudes of these local m0oments and their distribution are deduced. Relations between the local moments and the particle sizes, the weak link, oxygen content and the interactions between the local moments are also discussed. Comparison of the results from small particles and bulk samples shows that conclusions obtained from small particle experiments are reliable and universal.展开更多
This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly ...This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly proposed moment conditions include those associated with the equidispersion, the Negbin I-type model and the stationarity. The GMM estimators are constructed incorporating the additional moment conditions. Some Monte Carlo experiments indicate that the GMM estimators incorporating the additional moment conditions perform well, compared to that using only the conventional moment conditions proposed by [2,3].展开更多
In this paper a nuclear bag model is proposed in which the nucleus is treatedas a spherical symmetric MIT bag and the nucleons satisfy the MIT bag model bounda-ry condition.The model is employed to calculate nuclear m...In this paper a nuclear bag model is proposed in which the nucleus is treatedas a spherical symmetric MIT bag and the nucleons satisfy the MIT bag model bounda-ry condition.The model is employed to calculate nuclear magnetic moments of finitenuclei.The results are in good agreement with the experimental data.展开更多
This paper discusses the estimation of parameters in the zero-inflated Poisson (ZIP) model by the method of moments. The method of moments estimators (MMEs) are analytically compared with the maximum likelihood estima...This paper discusses the estimation of parameters in the zero-inflated Poisson (ZIP) model by the method of moments. The method of moments estimators (MMEs) are analytically compared with the maximum likelihood estimators (MLEs). The results of a modest simulation study are presented.展开更多
基金The project sponsored by the Foundation for Doctorate Thesis of Tsinghua Universitythe National Key Project in 1999-2004 sponsored by the Ministry of Science and Technology of China
文摘A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using the well-known EBU-Arrhenius model and the original second-order moment model. The comparison shows the advantage of the new model that it requires almost the same computational storage and time as that of the original second-order moment model, but its modeling results are in better agreement with experiments than those using other models. Hence, the new second-order moment model is promising in modeling turbulent combustion with NOx formation with finite reaction rate for engineering application.
基金Supported by the Special Funds for Major State Basic Research Projects, PRC(G1999-0222-08) and the National Natural Science Foundation of China(No. 19872039).
文摘A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the bubble and liquid velocities, bubble volume fraction, bubble and liquid Reynolds stresses and bubble-liquidvelocity correlation. For predicted two-phase velocities and bubble volume fraction there is only slight differencebetween these two models, and the simulation results using both two models are in good agreement with the particleimage velocimetry (PIV) measurements. Although the predicted two-phase Reynolds stresses using the FSM are insomewhat better agreement with the PIV measurements than those predicted using the ASM, the Reynolds stressespredicted using both two models are in general agreement with the experiments. Therefore, it is suggested to usethe ASM two-phase turbulence model in engineering application for saving the computation time.
基金Project supported by the National Key Basic Research and Development Program of China(No.G1999-0222-08)
文摘The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θ model in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θ model has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θ model was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.
文摘In continuous casting rolling process, the deformed body is different from the hot rolling strip. The metal in casting rolling zone is first assumed to be viscous fluid and the mathematical model of casting rolling force is established, then the calculating formula for casting rolling torque is derived. In addition, considering the effects of deforming cone and appendant torque of rotary junctions sealing ring, the calculating model which accords with casting rolling condition is found out. Theoretical formula is proved by experiment.
基金supported by the National Key Project of Fundamental Research of China (Grant No.G1999-0222-07-08)the National Natural Science Foundation of China (Grant Nos.50736006 and 50606026)the Foundation of State Key Laboratory of Engines,Tianjin University (Grant No.K2010-07)
文摘Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed phase turbulence,is the key problem in the Eulerian-Eulerian simulation of practical dispersed multiphase flows.Although different models were developed and used,the experimental validation shows that they cannot always give satisfactory prediction results.In this paper the present author give a detailed review of the unified second-order moment (USM),k-k p and nonlinear k-k p two-phase turbulence models,proposed by him.The derivation and closure of these models are described in detail and the experimental validation and application of these models are extensively discussed.
基金supported by the National Key Project of Fundamental Research of China (Grant No. G1999-0222-07-08)the Projects of the National Natural Science Foundation of China (Grant Nos. 50736006 and 50606026)the Foundation of the State Key Laboratory of Engines, Tianjin University (Grant No. K-2010-07)
文摘Dense gas-particle flows are frequently encountered in fluidized beds,riser and downer reactors,pneumatic transport and the near-wall zone of dilute gas-particle flows.Particle-particle collision plays an important role in the behavior of two-phase flows.In this paper a USM-Q two-phase turbulence model for dense gas-particle flows is proposed to account for both two-phase turbulence and inter-particle collision.For two-fluid large-eddy simulation of gas-particle flows,the author proposed a unified second-order moment(USM) two-phase SGS stress model and a two-phase k-kp SGS energy-equation stress model.The proposed models can fully account for the interaction between the gas and particle SGS stresses.
基金The project supported by the Special Funds for Major State Basic Research,China(G-1999-0222-08)the Postdoctoral Science Foundation(2004036239)
文摘A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision and through a unified treatment of these two kinds of fluctuations. The proposed model is used to simulate gas-particle flows in a channel and in a downer. Simulation results are in agreement with the experimental results reported in references and are near the results obtained using the sin- gle-scale second-order moment two-phase turbulence model superposed with a particle collision model (USM-θ model) in most regions.
文摘We propose that the QCD vacuum pion tetrahedron condensate density vary in space and drops to extremely low values in the Kennan, Barger and Cowie (KBC) void in analogy to earth’s atmospheric density drop with elevation from earth. We propose a formula for the gravitation acceleration based on the non-uniform pion tetrahedron condensate. Gravity may be due to the underlying microscopic attraction between quarks and antiquarks, which are part of the vacuum pion tetrahedron condensate. We propose an electron tetrahedron model, where electrons are comprised of tetraquark tetrahedrons, and . The quarks determine the negative electron charge and the or quarks determine the electron two spin states. The electron tetrahedron may perform a high frequency quark exchange reactions with the pion tetrahedron condensate by tunneling through the condensation gap creating a delocalized electron cloud with a fixed spin. The pion tetrahedron may act as a QCD glue bonding electron pairs in atoms and molecules and protons to neutrons in the nuclei. Conservation of valence quarks and antiquarks is proposed.
基金Project supported by China Post-Doctoral Science Foundation(No.2004036239)
文摘A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concept of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision. The proposed model is used to simulate gas-particle downer reactor flows. The computational results of both particle volume fraction and mean velocity are in agreement with the experimental results. After analyzing effects of empirical coefficient on prediction results, we can come to a conclusion that, inside the limit range of empirical coefficient, the predictions do not reveal a large sensitivity to the empirical coefficient in the downer reactor, but a relatively great change of the constants has important effect on the prediction.
基金supported by the National Natural Science Foundation of China(Nos.11372130,11290153,and 11290154)
文摘In this paper, an attitude maneuver control problem is investigated for a rigid spacecraft using an array of two variable speed control moment gyroscopes (VSCMGs) with gimbal axes skewed to each other. A mathematical model is constructed by taking the spacecraft and the gyroscopes together as an integrated system, with the coupling interaction between them considered. To overcome the singular issues of the VSCMGs due to the conventional torque-based method, the first-order derivative of gimbal rates and the second-order derivative of the rotor spinning velocity, instead of the gyroscope torques, are taken as input variables. Moreover, taking external disturbances into account, a feedback control law is designed for the system based on a method of nonlinear model predictive control (NMPC). The attitude maneuver can be realized fast and smoothly by using the proposed controller in this paper.
基金Project supported by the National Natural Science Foundation of China(Grant No.11272051)
文摘In this paper, we investigate the solution moment stability for a Harrison-type predator-prey model with parametric dichotomous noises. Using the Shapiro-Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses.
基金supported by the National Natural Science Funds of China(Grant No.41205071)the Ministry of Science and Technology of China for the National Basic Research Program of China(973 Program:Grant No.2011CB309704)the funding support from the U.S.Department of Energy(DOE),Office of Science,Earth System Modeling Program
文摘A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model's capability to simulate aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces a reasonable rep- resentation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in situ observations. The longwave and shortwave cloud forcings are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous ice nucleation formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. ~rthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that the impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account.
文摘A range of powdered Bi:2 212 samples exhibiting the paramagnetic Meissner effect (PME) are systematically examined. Interpretation of the results is made in terms of a phenomenological model in which there is a concentration within the material of small local moments that can be polarized during a field cooling. Information about the magnitudes of these local m0oments and their distribution are deduced. Relations between the local moments and the particle sizes, the weak link, oxygen content and the interactions between the local moments are also discussed. Comparison of the results from small particles and bulk samples shows that conclusions obtained from small particle experiments are reliable and universal.
文摘This paper proposes some additional moment conditions for the linear feedback model with explanatory variables being predetermined, which is proposed by [1] for the purpose of dealing with count panel data. The newly proposed moment conditions include those associated with the equidispersion, the Negbin I-type model and the stationarity. The GMM estimators are constructed incorporating the additional moment conditions. Some Monte Carlo experiments indicate that the GMM estimators incorporating the additional moment conditions perform well, compared to that using only the conventional moment conditions proposed by [2,3].
文摘In this paper a nuclear bag model is proposed in which the nucleus is treatedas a spherical symmetric MIT bag and the nucleons satisfy the MIT bag model bounda-ry condition.The model is employed to calculate nuclear magnetic moments of finitenuclei.The results are in good agreement with the experimental data.
文摘This paper discusses the estimation of parameters in the zero-inflated Poisson (ZIP) model by the method of moments. The method of moments estimators (MMEs) are analytically compared with the maximum likelihood estimators (MLEs). The results of a modest simulation study are presented.