期刊文献+
共找到26,819篇文章
< 1 2 250 >
每页显示 20 50 100
Moments of inertia of triaxial nuclei in covariant density functional theory
1
作者 Yu-Meng Wang Qi-Bo Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第10期197-207,共11页
The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted ... The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations. 展开更多
关键词 moment of inertia Trixial nucleus Covariant density functional theory Five-dimensional collective Hamiltonian Low-lying energy spectrum
下载PDF
Determining the moment of inertia of triaxial Mars with updated global gravity models 被引量:2
2
作者 ChangYi Xu Yan Jiang 《Earth and Planetary Physics》 CAS CSCD 2023年第6期615-619,共5页
The principal moments of inertia(PMIs)with the principal axes are usually taken as the dynamic figure parameters of Mars;they can be deduced from satellite-observed degree-two gravitational potentials in recent global... The principal moments of inertia(PMIs)with the principal axes are usually taken as the dynamic figure parameters of Mars;they can be deduced from satellite-observed degree-two gravitational potentials in recent global gravity models and from the dynamic ellipticities resulting from precession observations.These PMIs are natural and significant for the geodetic,geophysical,and geodynamic problems of Mars,which are functions of internal density distributions.In this study,a closed and concise formula for determining the PMIs of the entire planet and its core was developed based on the second invariants of gravity and a multipole expansion.We deduced the polar oblateness J^(2)and the equatorial ellipticity J_(22)of Mars to be 1.9566×10^(−3)and 6.3106×10^(−5),respectively.The preferred principal moments of inertia of Mars are A=2.66589×1036 kg·m^(2),B=2.66775×10^(36)kg·m^(2),and C=2.68125×10^(36)kg·m^(2).These values indicate that Mar is slightly triaxial.The equatorial principal moment of inertia of the Martian core is 1.46008×10^(35)kg·m^(2),accounting for~5.47%of the planet’s PMI;this result is critical for investigating the density and size of the core of Mars,and the planet’s free core nutation. 展开更多
关键词 MARS principal moment of inertia dynamic ellipticity Chandler wobble core density and size
下载PDF
Moment Redistribution Effect of the Continuous Glass Fiber Reinforced Polymer-Concrete Composite Slabs Based on Static Loading Experiment
3
作者 Zhao-Jun Zhang Wen-Wei Wang +4 位作者 Jing-Shui Zhen Bo-Cheng Li De-Cheng Cai Yang-Yang Du Hui Huang 《Structural Durability & Health Monitoring》 EI 2025年第1期105-123,共19页
This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment z... This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone.An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs,and a calculation method based on the conjugate beam method was proposed.The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens.Two methods,epoxy resin bonding,and stud connection,were used to connect the composite slabs with the steel beams.The experimental findings showed that the specimen connected with epoxy resin exhibited two moments redistribution phenomena during the loading process:concrete cracking and steel bar yielding at the internal support.In contrast,the composite slab connected with steel beams by studs exhibited only one-moment redistribution phenomenon throughout the loading process.As the concrete at the internal support cracked,the bending moment decreased in the internal support section and increased in the midspan section.When the steel bars yielded,the bending moment further decreased in the internal support section and increased in the mid-span section.Since GFRP profiles do not experience cracking,there was no significant decrease in the bending moment of the mid-span section.All test specimens experienced compressive failure of concrete at the mid-span section.Calculation results showed good agreement between the calculated and experimental values of bending moments in the mid-span section and internal support section.The proposed model can effectively predict the moment redistribution behavior of continuous GFRP-concrete composite slabs. 展开更多
关键词 moment redistribution GFRP-concrete composite slabs bending moment experimental study analysis model
下载PDF
The Nature of Inertia Explained Using the Field Theory
4
作者 Branko Kovac 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期726-748,共23页
Analysis of free fall and acceleration of the mass on the Earth shows that using abstract entities such as absolute space or inertial space to explain mass dynamics leads to the violation of the principle of action an... Analysis of free fall and acceleration of the mass on the Earth shows that using abstract entities such as absolute space or inertial space to explain mass dynamics leads to the violation of the principle of action and reaction. Many scientists including Newton, Mach, and Einstein recognized that inertial force has no reaction that originates on mass. Einstein calls the lack of reaction to the inertial force a serious criticism of the space-time continuum concept. Presented is the hypothesis that the inertial force develops in an interaction of two masses via the force field. The inertial force created by such a field has reaction force. The dynamic gravitational field predicted is strong enough to be detected in the laboratory. This article describes the laboratory experiment which can prove or disprove the hypothesis of the dynamic gravitational field. The inertial force, calculated using the equation for the dynamic gravitational field, agrees with the behavior of inertial force observed in the experiments on the Earth. The movement of the planets in our solar system calculated using that equation is the same as that calculated using Newton’s method. The space properties calculated by the candidate equation explain the aberration of light and the results of light propagation experiments. The dynamic gravitational field can explain the discrepancy between the observed velocity of stars in the galaxy and those predicted by Newton’s theory of gravitation without the need for the dark matter hypothesis. 展开更多
关键词 GRAVITATION Gravitational Fields Non-Standard Theories of Gravity inertia
下载PDF
Inertial Entropy and External Validation of Clusterings
5
作者 Dan Simovici Joshua Yee 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期41-54,共14页
Axiomatization of Shannon entropy is a subject that has received lots of attention in the information theory literature.While Shannon entropy is defined on probability distribution,we define a new type of entropy on t... Axiomatization of Shannon entropy is a subject that has received lots of attention in the information theory literature.While Shannon entropy is defined on probability distribution,we define a new type of entropy on the set of partitions of finite subsets of metric spaces,which has a rich algebraic structure as a partially ordered set.We propose an axiomatization of an entropy-like measure of partitions of sets of objects located in metric spaces,and we derive an analytic expression of this new type of entropy referred to as inertial entropy.This approach starts with the notion of inertia of a partition and includes a study of the behavior of the sum of square errors of a partition.In this context,we characterize the chain of partitions produced by the Ward hierarchical clustering method.Starting from inertial entropies of partitions,we introduce conditional entropies which,in turn,generate metrics on partitions of finite sets.These metrics are used as external validation tools for clusterings of labeled data sets.The metric generated by inertial entropy can be used to validate data clustering for labeled data sets.This type of validation aims to determine to what extend labeling of the data coincides with the clustering obtained algorithmically,and we obtain a high degree of consistency of the data labeling with the results of several hierarchical clusterings. 展开更多
关键词 PARTITION inertia hierarchical clustering generalized entropy
下载PDF
Complete Convergenceand Complete Moment Convergence for Weighted Sums of ANA Random Variables
6
作者 MENG Bing WU Qunying 《应用概率统计》 CSCD 北大核心 2024年第5期710-724,共15页
In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distri... In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distribution.The obtained results not only extend those of An and Yuan[1]and Shen et al.[2]to the case of ANA random variables,but also partially improve them. 展开更多
关键词 ANA random variables complete convergence complete moment convergence weighted sums
下载PDF
Sensitivity Analysis of Electromagnetic Scattering from Dielectric Targets with Polynomial Chaos Expansion and Method of Moments
7
作者 Yujing Ma Zhongwang Wang +2 位作者 Jieyuan Zhang Ruijin Huo Xiaohui Yuan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期2079-2102,共24页
In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is a... In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets. 展开更多
关键词 Adaptive polynomial chaos expansion method method of moments radar cross section electromagnetic scattering
下载PDF
The deterministic condition for the ground reaction force acting point on the combined knee valgus and tibial internal rotation moments in early phase of cutting maneuvers in female athletes
8
作者 Issei Ogasawara Ken Ohta +4 位作者 Gajanan S.Revankar Shoji Konda Yohei Shimokochi Hideyuki Koga Ken Nakata 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第3期376-386,共11页
Background:Combined knee valgus and tibial internal rotation(VL+IR)moments have been shown to stress the anterior cruciate ligament(ACL)in several in vitro cadaveric studies.To utilize this knowledge for non-contact A... Background:Combined knee valgus and tibial internal rotation(VL+IR)moments have been shown to stress the anterior cruciate ligament(ACL)in several in vitro cadaveric studies.To utilize this knowledge for non-contact ACL injury prevention in sports,it is necessary to elucidate how the ground reaction force(GRF)acting point(center of pressure(CoP))in the stance foot produces combined knee VL+IR moments in risky maneuvers,such as cuttings.However,the effects of the GRF acting point on the development of the combined knee VL+IR moment in cutting are still unknown.Methods:We first established the deterministic mechanical condition that the CoP position relative to the tibial rotational axis differentiates the GRF vector’s directional probability for developing the combined knee VL+IR moment,and theoretically predicted that when the CoP is posterior to the tibial rotational axis,the GRF vector is more likely to produce the combined knee VL+IR moment than when the CoP is anterior to the tibial rotational axis.Then,we tested a stochastic aspect of our theory in a lab-controlled in vivo experiment.Fourteen females performed 60˚cutting under forefoot/rearfoot strike conditions(10 trials each).The positions of lower limb markers and GRF data were measured,and the knee moment due to GRF vector was calculated.The trials were divided into anterior-and posterior-CoP groups depending on the CoP position relative to the tibial rotational axis at each 10 ms interval from 0 to 100 ms after foot strike,and the occurrence rate of the combined knee VL+IR moment was compared between trial groups.Results:The posterior-CoP group showed significantly higher occurrence rates of the combined knee VL+IR moment(maximum of 82.8%)at every time point than those of the anterior-CoP trials,as theoretically predicted by the deterministic mechanical condition.Conclusion:The rearfoot strikes inducing the posterior CoP should be avoided to reduce the risk of non-contact ACL injury associated with the combined knee VL+IR stress. 展开更多
关键词 Center of pressure Deterministic condition Foot strike pattern Injury mechanism moment of ground reaction force
下载PDF
Moments of Inertia, Magnetic Dipole Moments, and Electric Quadrupole Moments of the Lithium Isotopes
9
作者 Khadija Abdelhassan Kharroube 《Open Journal of Microphysics》 2023年第4期69-97,共29页
The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-parti... The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-particle potential which is deformed with time t, through its parametric dependence on a classical shape variable α(t). Also, the Nilsson model is designed for the calculations of the single-particle energy levels, the magnetic dipole moments, and the electric quadrupole moments of axially symmetric deformed nuclei by assuming that all the nucleons are moving in the field of an anisotropic oscillator potential. On the other hand, the nuclear superfluidity model is designed for the calculations of the nuclear moments of inertia and the electric quadrupole moments of deformed nuclei which have no axes of symmetry by assuming that the nucleons are moving in a quadruple deformed potential. Furthermore, the cranked Nilsson model is designed for the calculations of the total nuclear energy and the quadrupole moments of deformed nuclei which have no axes of symmetry by modifying the Nilsson potential to include second and fourth order oscillations. Accordingly, to investigate whether the six p-shell isotopes <sup>6</sup>Li, <sup>7</sup>Li, <sup>8</sup>Li, <sup>9</sup>Li, <sup>10</sup>Li, and <sup>11</sup>Li have axes of symmetry or not, we applied the four mentioned models to each nucleus by calculating their moments of inertia, their magnetic dipole moments, and their electric quadrupole moments by varying the deformation parameter β and the non-axiality parameter γ in wide ranges of values for this reason. Hence for the assumption that these isotopes are deformed and have axes of symmetry, we applied the single-particle Schrödinger fluid model and the Nilsson model. On the other hand, for the assumption that these isotopes are deformed and have no axes of symmetry, we applied the cranked Nilsson model and the nuclear super fluidity model. As a result of our calculations, we can conclude that the nucleus <sup>6</sup>Li may be assumed to be deformed and has an axis of symmetry. 展开更多
关键词 Single-Particle Schrödinger Fluid Model Nilsson Model Cranked Nilsson Model Nuclear Superfluidity Model moments of inertia Magnetic Dipole moments Electric Quadrupole moments
下载PDF
Moment magnitudes of two large Turkish earthquakes on February 6,2023 from long-period coda 被引量:7
10
作者 Xinyu Jiang Xiaodong Song +1 位作者 Tian Li Kaixin Wu 《Earthquake Science》 2023年第2期169-174,共6页
Two large earthquakes(an earthquake doublet)occurred in south-central Turkey on February 6,2023,causing massive damages and casualties.The magnitudes and the relative sizes of the two mainshocks are essential informat... Two large earthquakes(an earthquake doublet)occurred in south-central Turkey on February 6,2023,causing massive damages and casualties.The magnitudes and the relative sizes of the two mainshocks are essential information for scientific research and public awareness.There are obvious discrepancies among the results that have been reported so far,which may be revised and updated later.Here we applied a novel and reliable long-period coda moment magnitude method to the two large earthquakes.The moment magnitudes(with one standard error)are 7.95±0.013 and 7.86±0.012,respectively,which are larger than all the previous reports.The first mainshock,which matches the largest recorded earthquakes in the Turkish history,is slightly larger than the second one by 0.11±0.035 in magnitude or by 0.04 to 0.18 at 95%confidence level. 展开更多
关键词 2023 Turkish earthquakes coda wave moment magnitude long-period
下载PDF
Earth's Temporal Principal Moments of Inertia and Variable Rotation 被引量:6
11
作者 SHEN Wenbin CHEN Wei SUN Rong 《Geo-Spatial Information Science》 2008年第2期127-132,共6页
Based on the gravity field models EGM96 and EIGEN-GL04C, the Earth's time-dependent principal moments of inertia A, B, C are obtained, and the variable rotation of the Earth is determined. Numerical results show that... Based on the gravity field models EGM96 and EIGEN-GL04C, the Earth's time-dependent principal moments of inertia A, B, C are obtained, and the variable rotation of the Earth is determined. Numerical results show that A, B, and C have increasing tendencies; the tilt of the rotation axis increases 2.1×10^ 8 mas/yr; the third component of the rotational angular velocity, ω3 , has a decrease of 1.0×10^ 22 rad/s^2, which is around 23% of the present observed value. Studies show in detail that both 0 and ω3 experience complex fluctuations at various time scales due to the variations of A, B and C. 展开更多
关键词 Earth rotation principal moments of inertia wavelet analysis
下载PDF
Analysis of rockburst mechanism and warning based on microseismic moment tensors and dynamic Bayesian networks 被引量:4
12
作者 Haoyu Mao Nuwen Xu +4 位作者 Xiang Li Biao Li Peiwei Xiao Yonghong Li Peng Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2521-2538,共18页
One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the ev... One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects. 展开更多
关键词 Microseismic monitoring moment tensor Dynamic Bayesian network(DBN) Rockburst warning Shuangjiangkou hydropower station
下载PDF
Uncertainty analysis of ship model vertical center of gravity and transverse moment of inertia test 被引量:1
13
作者 史圣哲 郑亚雄 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第1期41-46,共6页
The usability of test results of ship model vertical center of gravity and transverse moment of inertia is generally depends on its uncertainty. Referring to the guidelines for uncertainty analysis in examination of l... The usability of test results of ship model vertical center of gravity and transverse moment of inertia is generally depends on its uncertainty. Referring to the guidelines for uncertainty analysis in examination of liquid dynamic recommended by International Towing Tank Conference ( ITTC), the results were analyzed, bias limits and precision limits were calculated and total uncertainty was estimated. The total uncertainty of six tests on ship model vertical center of gravity is is 0. 16% of the mean value, and the total uncertainty of six tests on ship model transverse moment of inertia is 5.66% of the mean value. The test results show that the total uncertainty of both the multiple tests and the single test is from the precision limits of ship model vertical center of gravity and transverse moment of inertia tests. Thus, the improved measurement system stability can enormously decrease the total uncertainty of multiple tests and the single test. 展开更多
关键词 ship model test vertical center of gravity transverse moment of inertia uncertainty analysis
下载PDF
A Measuring Method on Moment of Inertia of Large-scale Ammunition 被引量:4
14
作者 侯文 郑宾 杨瑞峰 《Defence Technology(防务技术)》 SCIE EI CAS 2005年第1期41-45,共5页
A compound pendulum based measurement method is put forward and the relevant equipment is designed. By using the variation of angle with the time acquired by an angular displacement sensor, the moment of inertia is ob... A compound pendulum based measurement method is put forward and the relevant equipment is designed. By using the variation of angle with the time acquired by an angular displacement sensor, the moment of inertia is obtained through the numerical solution of certain equations, which are deduced from the phase-plane analysis of compound pendulum. The influences of both friction and air resistance on the compound pendulum are already taken into consideration without estimating and measuring the resistances in advance. With this method, the to-be-measured object can be positioned and fixed easily and safely. Numerical simulations show a favorable precision of this method. 展开更多
关键词 惯性力矩 复摆测量法 摩擦力矩 空气阻力 相平面 角度位移传感器 导弹
下载PDF
Band engineering of valleytronics WSe_(2)–MoS_(2)heterostructures via stacking form,magnetic moment and thickness
15
作者 吴彦玮 张宗源 +5 位作者 马亮 刘涛 郝宁 吕文刚 龙明生 单磊 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期45-49,共5页
Spin-valley polarization and bandgap regulation are critical in the developing of quantum devices.Here,by employing the density functional theory,we investigate the effects of stacking form,thickness and magnetic mome... Spin-valley polarization and bandgap regulation are critical in the developing of quantum devices.Here,by employing the density functional theory,we investigate the effects of stacking form,thickness and magnetic moment in the electronic structures of WSe_(2)–MoS_(2)heterostructures.Calculations show that spin-valley polarization maintains in all situations.Increasing thickness of 2H-MoS_(2)not only tunes the bandgap but also changes the degeneracy of the conduction band minimums(CBM)at K/K_(1) points.Gradual increase of micro magnetic moment tunes the bandgap and raises the valence band maximums(VBM)atΓpoint.In addition,the regulation of band gap by the thickness of 2H-MoS_(2)and introduced magnetic moment depends on the stacking type.Results suggest that WSe_(2)–MoS_(2)heterostructure supports an ideal platform for valleytronics applications.Our methods also give new ways of optical absorption regulation in spin-valley devices. 展开更多
关键词 valleytronics thickness STACKING magnetic moment
下载PDF
Disjointed Equivalence of Gravitational and Inertial Mass
16
作者 Dirk J. Pons 《Journal of Modern Physics》 CAS 2023年第3期237-270,共34页
Problem—Contemporary physics offers no underlying reason for the equivalence of inertial and gravitational mass. Approach—The equivalence is examined from the new physics provided by the cordus theory, being a non-l... Problem—Contemporary physics offers no underlying reason for the equivalence of inertial and gravitational mass. Approach—The equivalence is examined from the new physics provided by the cordus theory, being a non-local hidden-variable (NLHV) theory. Mathematical formalisms are derived for masses and observers in different fabric densities. Findings—A disjointed equivalence is predicted, whereby inertial and gravitational masses are equivalent in any one situation, but a different equivalence holds when the fabric densities change. Consequently this theory predicts that the gravitational constant G varies with fabric density, and hence would be different across the universe and across time. Not only is the gravitational constant non-constant, but the formulation of gravitation changes with fabric density. Specifically, the theory predicts gravity is stronger at genesis (and the end of the universe) such that orbit velocity v<sub>B</sub> ∝  (where r<sub>B</sub> is orbit radius), compared to weaker gravitation at middle life epochs with r<sub>B</sub><sub> </sub>∝ . The current Earth location and epoch correspond to the latter case, i.e. Newtonian gravitation is recovered. The findings disfavour the existence of both dark energy and dark matter, and instead attribute these effects to differences in the fabric density. Originality—The work makes the contribution of deriving a mass equivalence relationship that includes fabric density, identifying a disjointed mass equivalence, and showing that the gravitation formulation itself changes with relative fabric densities. 展开更多
关键词 Identity of Mass GRAVITATION inertia General Relativity Quantum Mechanics
下载PDF
Dynamic connectedness and network in the high moments of cryptocurrency,stock,and commodity markets
17
作者 Waqas Hanif Hee‑Un Ko +1 位作者 Linh Pham Sang Hoon Kang 《Financial Innovation》 2023年第1期2388-2427,共40页
This study examines the connectedness in high-order moments between cryptocurrency,major stock(U.S.,U.K.,Eurozone,and Japan),and commodity(gold and oil)markets.Using intraday data from 2020 to 2022 and the time and fr... This study examines the connectedness in high-order moments between cryptocurrency,major stock(U.S.,U.K.,Eurozone,and Japan),and commodity(gold and oil)markets.Using intraday data from 2020 to 2022 and the time and frequency connectedness models of Diebold and Yilmaz(Int J Forecast 28(1):57–66,2012)and Barunik and Křehlik(J Financ Econom 16(2):271–296,2018),we investigate spillovers among the markets in realized volatility,the jump component of realized volatility,realized skewness,and realized kurtosis.These higher-order moments allow us to identify the unique characteristics of financial returns,such as asymmetry and fat tails,thereby capturing various market risks such as downside risk and tail risk.Our results show that the cryptocurrency,stock,and commodity markets are highly connected in terms of volatility and in the jump component of volatility,while their connectedness in skewness and kurtosis is smaller.Moreover,jump and volatility connectedness are more persistent than that of skewness and kurtosis connectedness.Our rolling-window analysis of the connectedness models shows that connectedness varies over time across all moments,and tends to increase during periods of high uncertainty.Finally,we show the potential of gold and oil as hedging and safe-haven investments for other markets given that they are the least connected to other markets across all moments and investment horizons.Our findings provide useful information for designing effective portfolio management and cryptocurrency regulations. 展开更多
关键词 SPILLOVERS High moments High frequency HEDGING
下载PDF
Analytical Investigation into the Rotational Performance of Glulam Bolted Beam-Column Connections under Coupled Bending Moment and Shear Force
18
作者 Xiaofeng Zhang Lisheng Luo +2 位作者 Youfu Sun Xinyue Cui Yongqiang Zhang 《Journal of Renewable Materials》 SCIE EI 2023年第4期2033-2054,共22页
Considering the glulam beam-column connection form and the number of bolts,monotonic loading test and finite element analysis was carried out on 9 connection specimens in 3 groups to study the rotational performance a... Considering the glulam beam-column connection form and the number of bolts,monotonic loading test and finite element analysis was carried out on 9 connection specimens in 3 groups to study the rotational performance and failure mode of the connection.The test results revealed that compared with U-shaped connectors,T-shaped connectors can effectively improve the ductility of connections,and the increase in the number of bolts can reduce the initial stiffness and ductility of connections.By theoretical analysis,formulas for calculating the initial stiffness and ultimate moment of connections were deduced.Subsequently,the moment-rotation theoretical model of connections was established based on the formulas,which were validated according to the test data and simulation results.The proposed model can not only improve the current theoretical system of heavy-duty glulam beam-column structure but also provide a theoretical basis for calculating the mechanical properties of the glulam beam-column connection. 展开更多
关键词 Beam-column connection mechanical properties STIFFNESS ultimate moment
下载PDF
Measurement of remanent magnetic moment using a torsion pendulum with single frequency modulation method
19
作者 乔敏娜 刘鲁华 +4 位作者 蔡柏松 张雅婷 王晴岚 徐家豪 刘祺 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期83-87,共5页
In Tian Qin spaceborne gravitational-wave detectors, the stringent requirements on the magnetic cleanliness of the test masses demand the high resolution ground-based characterization measurement of their magnetic pro... In Tian Qin spaceborne gravitational-wave detectors, the stringent requirements on the magnetic cleanliness of the test masses demand the high resolution ground-based characterization measurement of their magnetic properties. Here we present a single frequency modulation method based on a torsion pendulum to measure the remanent magnetic moment mr of 1.1 kg dummy copper test mass, and the measurement result is(6.45 ± 0.04(stat) ± 0.07(syst)) × 10^(-8)A · m^(2). The measurement precision of the mr is about 0.9 n A · m^(2), well below the present measurement requirement of Tian Qin. The method is particularly useful for measuring extremely low magnetic properties of the materials for use in the construction of space-borne gravitational wave detection and other precision scientific apparatus. 展开更多
关键词 remanent magnetic moment torsion pendulum single frequency modulation method
下载PDF
Explaining Pomeranchuk Effect by Parity of Magnetic Moments of Leptons and Hadrons for Superconductivity in 3He and Graphene*
20
作者 Reginald B. Little 《Journal of Modern Physics》 CAS 2023年第5期583-603,共21页
The mystery of superconductivity has intrigued scientists for 110 years now. The author in 2014 specifically predicted the superconductivity in carbon, sulfur and hydrogen compounds and generally predicted carbonaceou... The mystery of superconductivity has intrigued scientists for 110 years now. The author in 2014 specifically predicted the superconductivity in carbon, sulfur and hydrogen compounds and generally predicted carbonaceous, hydrogeneous and sulfurous compounds in 2005 with reference to scattering to asymmetric orbital motions and associated spin and orbital exchanges between nuclei and electrons. The emphasis was in 2005 upon stronger electron and nuclear interactions and electron-phonon effects. But here the author develops more the un-gerade parity of the p and f orbitals and their contributions to the superconductivity at lower pressures and higher temperatures. On the bases of such, the role of parity from the origin and inflation of the Universe is noted and dark and bright energies and matters in the mature Universe are reasoned. Moreover, the superconductors are all reasoned by positive and negative nuclear magnetic moments (NMMs) with availability of un-gerade parities of p and f subshells and their orbitals. In addition to superconductivity, such positive and negative NMMs by Little Effect is presented for explaining Pomeranchuk Effect and thereby further explaining superconductivity and superfluidity of <sup>3</sup>He. On the bases of successes of Little Effect via positive and negative NMMs, in particular negative NMMs of <sup>3</sup>He, the superconductivity in twisted graphene is explained and also its recently discovered Pomeranchuk Effect. 展开更多
关键词 SUPERCONDUCTIVITY Pomeranchuk Effect Little Effect Liquid State Nuclear Magnetic moments
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部