A measurement model based on torsion pendulum was established,in which nonlinear damping and nonlinear restoring force were considered.The calculation method of the moment of inertia was based on Hilbert transform.The...A measurement model based on torsion pendulum was established,in which nonlinear damping and nonlinear restoring force were considered.The calculation method of the moment of inertia was based on Hilbert transform.The motion of torsion pendulum showed the time-frequency characteristics due to the nonlinear factors,which were validated by the experimental data.The analytical signal was formed by Hilbert transform of the angular displacement signal of the test object.The moment of inertia can be computed by the instantaneous undamped natural frequency with Hilbert transform.Prior to the implementation of Hilbert transform,the empirical mode decomposition was used to filter the experimental signal.The moment of inertia of the test object was measured by the torsion pendulum system.The experimental results show that the relative measurement error of the moment of inertia was within 0.7%,which indicated the validity of the measurement method.展开更多
This paper develops a numerical method to invert multi-dimensional Laplace transforms. By a variable transform, Laplace transforms are converted to multi-dimensional Hansdorff moment problems so that the numerical sol...This paper develops a numerical method to invert multi-dimensional Laplace transforms. By a variable transform, Laplace transforms are converted to multi-dimensional Hansdorff moment problems so that the numerical solution can be achieved. Stability estimation is also obtained. Numerical simulations show the efficiency and practicality of the method.展开更多
Axis orbit is an important characteristic to be used in the condition monitoring and diagnosis system of rotating machine. The wavelet moment has the invariant to the translation, scaling and rotation. A method, which...Axis orbit is an important characteristic to be used in the condition monitoring and diagnosis system of rotating machine. The wavelet moment has the invariant to the translation, scaling and rotation. A method, which uses a neural network based on Radial Basis Function (RBF) and wavelet moment invariants to identify the orbit of shaft centerline of rotating machine is discussed in this paper. The principle and its application procedure of the method are introduced in detail. It gives simulation results of automatic identification for three typical axis orbits. It is proved that the method is effective and practicable.展开更多
Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional p...Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional power spectra(FrFT moment) of the linear chirp signal.This method can adaptively determine the optimum FrFT order by maximizing the second-order central FrFT moment.This makes the desired chirp signal substantially concentrated whereas the noise is rejected considerably.This improves the mean square error minimization beamformer by reducing effectively the signal-noise cross terms due to the finite data length de-correlation operation.Simulation results show that the new method works well under a wide range of signal to noise ratio and signal to interference ratio.展开更多
A new image watermarking scheme is proposed to resist rotation, scaling and translation (RST) attacks. Six combined low order image moments are utilized to represent image information on rotation, scaling and transl...A new image watermarking scheme is proposed to resist rotation, scaling and translation (RST) attacks. Six combined low order image moments are utilized to represent image information on rotation, scaling and translation. Affine transform parameters are registered by feedforward neural networks. Watermark is adaptively embedded in discrete wavelet transform (DWT) domain while watermark extraction is carried out without original image after attacked watermarked image has been synchronized by making inverse transform through parameters learned by neural networks. Experimental results show that the proposed scheme can effectively register affine transform parameters, embed watermark more robustly and resist geometric attacks as well as JPEG2000 compression.展开更多
In this study we establish the probability density function of the square transformed left-truncated N(1,σ2) error component of the multiplicative time series model and the functional expressions for its mean and var...In this study we establish the probability density function of the square transformed left-truncated N(1,σ2) error component of the multiplicative time series model and the functional expressions for its mean and variance. Furthermore the mean and variance of the square transformed left-truncated N(1,σ2) error component and those of the untransformed component were compared for the purpose of establishing the interval for σ where the properties of the two distributions are approximately the same in terms of equality of means and normality. From the results of the study, it was established that the two distributions are normally distributed and have means ≌1.0 correct to 1 dp in the interval 0 σ , hence a successful square transformation where necessary is achieved for values of σ such that 0 σ .展开更多
Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recogn...Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recognition and interpretation of images. The paper presents an approach to implement texture-based image retrieval using M-band wavelet transform. Firstly the traditional 2-band wavelet is extended to M-band wavelet transform. Then the wavelet moments are computed by M-band wavelet coefficients in the wavelet domain. The set of wavelet moments forms the feature vector related to the texture distribution of each wavelet images. The distances between the feature vectors describe the similarities of different images. The experimental result shows that the M-band wavelet moment features of the images are effective for image indexing. The retrieval method has lower computational complexity, yet it is capable of giving better retrieval performance for a given medical image database.展开更多
3D objects can be stored in computer of different describing ways, such as point set, polyline, polygonal surface and Euclidean distance map. Moment invariants of different orders may have the different magnitude. A m...3D objects can be stored in computer of different describing ways, such as point set, polyline, polygonal surface and Euclidean distance map. Moment invariants of different orders may have the different magnitude. A method for normalizing moments of 3D objects is proposed, which can set the values of moments of different orders roughly in the same range and be applied to different 3D data formats universally. Then accurate computation of moments for several objects is presented and experiments show that this kind of normalization is very useful for moment invariants in 3D objects analysis and recognition.展开更多
In this paper, a new shape classification system based on singular value decomposition (SVD) transform using nearest neighbour classifier was proposed. The gray scale image of the shape object was converted into a bla...In this paper, a new shape classification system based on singular value decomposition (SVD) transform using nearest neighbour classifier was proposed. The gray scale image of the shape object was converted into a black and white image. The squared Euclidean distance transform on binary image was applied to extract the boundary image of the shape. SVD transform features were extracted from the the boundary of the object shapes. In this paper, the proposed classification system based on SVD transform feature extraction method was compared with classifier based on moment invariants using nearest neighbour classifier. The experimental results showed the advantage of our proposed classification system.展开更多
Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ...Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ability of a time-division scale level moment. The analysis results in the caculation of six typical fault signals show that the time-division scale level moment can be used to display the detailed information of a wavelet gray level image, extract the signal's characteristics effectively, and distinguish the vibration fault. Compared to the method of a wave gray moment vector, the method mentioned in this paper can provide higher calculation speed and higher capacity of fault identification, so it is more suitable for online fault diagnosis for rotating machinery.展开更多
Searching interested images based on visual properties of images is a challenging problem and it has received considerable attention from researchers in the fields like image processing, computer vision and multimedia...Searching interested images based on visual properties of images is a challenging problem and it has received considerable attention from researchers in the fields like image processing, computer vision and multimedia systems in the last 20 years. While the importance and the effect of the image features like color, texture and shape have been taken into account in many papers, there have not been many studies on the importance of the color spaces on the performance of Content Based Image Retrieval (CBIR) systems. In this paper we first experimentally study the effect of choosing color space on the performance of content based image retrieval using Wavelet decomposition of each color channel. To this end, the retrieval results of different color spaces like RGB, YUV, HSV, YCbCr and Lab are analyzed. Then as a result a new Content Based Retrieval model using Wavelet Transform in Lab color space and Color Moments is proposed. In order to increase the efficiency of the proposed model some division schemes are taken into account which improves the performance of the proposed model. The proposed model tackles one of the important restrictions in content based image retrieval, namely, the challenge between the accuracy of retrieval and its time complexity. The experimental results on two databases [19] [24] demonstrate the superiority of the proposed model compared to existing models.展开更多
Line broadening in a diffraction intensity profile of powdered crystalline materials due to stacking fault has been characterized in terms of the zeroth, first, second, third, and fourth moments and the fourth cumulan...Line broadening in a diffraction intensity profile of powdered crystalline materials due to stacking fault has been characterized in terms of the zeroth, first, second, third, and fourth moments and the fourth cumulant. Calculations have been derived showing that the first moment causes a shift in the peak position of the profile while the third moment affects its shape. The intensity expression has been derived on the basis of usual Cartesian coordinates and also of polar coordinates indicated by the probability of the fault and the reciprocal lattice parameter as the two axes. The expressions for the fourth cumulant have also been so derived. Here we have used three different approaches to determine methods for calculating the fourth cumulant due to stacking faults. The three forms of the equations derived here are for different coordinate systems, but will arrive at the same answers.展开更多
The fitting of lifetime distribution in real-life data has been studied in various fields of research. With the theory of evolution still applicable, more complex data from real-world scenarios will continue to emerge...The fitting of lifetime distribution in real-life data has been studied in various fields of research. With the theory of evolution still applicable, more complex data from real-world scenarios will continue to emerge. Despite this, many researchers have made commendable efforts to develop new lifetime distributions that can fit this complex data. In this paper, we utilized the KM-transformation technique to increase the flexibility of the power Lindley distribution, resulting in the Kavya-Manoharan Power Lindley (KMPL) distribution. We study the mathematical treatments of the KMPL distribution in detail and adapt the widely used method of maximum likelihood to estimate the unknown parameters of the KMPL distribution. We carry out a Monte Carlo simulation study to investigate the performance of the Maximum Likelihood Estimates (MLEs) of the parameters of the KMPL distribution. To demonstrate the effectiveness of the KMPL distribution for data fitting, we use a real dataset comprising the waiting time of 100 bank customers. We compare the KMPL distribution with other models that are extensions of the power Lindley distribution. Based on some statistical model selection criteria, the summary results of the analysis were in favor of the KMPL distribution. We further investigate the density fit and probability-probability (p-p) plots to validate the superiority of the KMPL distribution over the competing distributions for fitting the waiting time dataset.展开更多
文摘A measurement model based on torsion pendulum was established,in which nonlinear damping and nonlinear restoring force were considered.The calculation method of the moment of inertia was based on Hilbert transform.The motion of torsion pendulum showed the time-frequency characteristics due to the nonlinear factors,which were validated by the experimental data.The analytical signal was formed by Hilbert transform of the angular displacement signal of the test object.The moment of inertia can be computed by the instantaneous undamped natural frequency with Hilbert transform.Prior to the implementation of Hilbert transform,the empirical mode decomposition was used to filter the experimental signal.The moment of inertia of the test object was measured by the torsion pendulum system.The experimental results show that the relative measurement error of the moment of inertia was within 0.7%,which indicated the validity of the measurement method.
基金the Jiangxi Provincial Natural Scientific Foundation(0211014)Scientific Research Program from Education Office of Jiangxi Province([2005]213)East China Institute of Technology.
文摘This paper develops a numerical method to invert multi-dimensional Laplace transforms. By a variable transform, Laplace transforms are converted to multi-dimensional Hansdorff moment problems so that the numerical solution can be achieved. Stability estimation is also obtained. Numerical simulations show the efficiency and practicality of the method.
基金the Programming of the National Ministry of Education(20002175)
文摘Axis orbit is an important characteristic to be used in the condition monitoring and diagnosis system of rotating machine. The wavelet moment has the invariant to the translation, scaling and rotation. A method, which uses a neural network based on Radial Basis Function (RBF) and wavelet moment invariants to identify the orbit of shaft centerline of rotating machine is discussed in this paper. The principle and its application procedure of the method are introduced in detail. It gives simulation results of automatic identification for three typical axis orbits. It is proved that the method is effective and practicable.
基金supported by the National Natural Science Foundation of China (606720846060203760736006)
文摘Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional power spectra(FrFT moment) of the linear chirp signal.This method can adaptively determine the optimum FrFT order by maximizing the second-order central FrFT moment.This makes the desired chirp signal substantially concentrated whereas the noise is rejected considerably.This improves the mean square error minimization beamformer by reducing effectively the signal-noise cross terms due to the finite data length de-correlation operation.Simulation results show that the new method works well under a wide range of signal to noise ratio and signal to interference ratio.
文摘A new image watermarking scheme is proposed to resist rotation, scaling and translation (RST) attacks. Six combined low order image moments are utilized to represent image information on rotation, scaling and translation. Affine transform parameters are registered by feedforward neural networks. Watermark is adaptively embedded in discrete wavelet transform (DWT) domain while watermark extraction is carried out without original image after attacked watermarked image has been synchronized by making inverse transform through parameters learned by neural networks. Experimental results show that the proposed scheme can effectively register affine transform parameters, embed watermark more robustly and resist geometric attacks as well as JPEG2000 compression.
文摘In this study we establish the probability density function of the square transformed left-truncated N(1,σ2) error component of the multiplicative time series model and the functional expressions for its mean and variance. Furthermore the mean and variance of the square transformed left-truncated N(1,σ2) error component and those of the untransformed component were compared for the purpose of establishing the interval for σ where the properties of the two distributions are approximately the same in terms of equality of means and normality. From the results of the study, it was established that the two distributions are normally distributed and have means ≌1.0 correct to 1 dp in the interval 0 σ , hence a successful square transformation where necessary is achieved for values of σ such that 0 σ .
文摘Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recognition and interpretation of images. The paper presents an approach to implement texture-based image retrieval using M-band wavelet transform. Firstly the traditional 2-band wavelet is extended to M-band wavelet transform. Then the wavelet moments are computed by M-band wavelet coefficients in the wavelet domain. The set of wavelet moments forms the feature vector related to the texture distribution of each wavelet images. The distances between the feature vectors describe the similarities of different images. The experimental result shows that the M-band wavelet moment features of the images are effective for image indexing. The retrieval method has lower computational complexity, yet it is capable of giving better retrieval performance for a given medical image database.
基金Supported by National Key Basic Research Program(No.2004CB318006)National Natural Science Foundation of China(Nos.60873164,60573154,60533090,61379082 and 61227802)
文摘3D objects can be stored in computer of different describing ways, such as point set, polyline, polygonal surface and Euclidean distance map. Moment invariants of different orders may have the different magnitude. A method for normalizing moments of 3D objects is proposed, which can set the values of moments of different orders roughly in the same range and be applied to different 3D data formats universally. Then accurate computation of moments for several objects is presented and experiments show that this kind of normalization is very useful for moment invariants in 3D objects analysis and recognition.
基金This paper received financial support towards the cost of its publication from the Deanship of Research and Graduate Studies at Applied Science University, Amman, Jordan.
文摘In this paper, a new shape classification system based on singular value decomposition (SVD) transform using nearest neighbour classifier was proposed. The gray scale image of the shape object was converted into a black and white image. The squared Euclidean distance transform on binary image was applied to extract the boundary image of the shape. SVD transform features were extracted from the the boundary of the object shapes. In this paper, the proposed classification system based on SVD transform feature extraction method was compared with classifier based on moment invariants using nearest neighbour classifier. The experimental results showed the advantage of our proposed classification system.
基金This paper is supported by the National Natural Science Foundation of China (NSFC) under Grant No.50775083
文摘Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ability of a time-division scale level moment. The analysis results in the caculation of six typical fault signals show that the time-division scale level moment can be used to display the detailed information of a wavelet gray level image, extract the signal's characteristics effectively, and distinguish the vibration fault. Compared to the method of a wave gray moment vector, the method mentioned in this paper can provide higher calculation speed and higher capacity of fault identification, so it is more suitable for online fault diagnosis for rotating machinery.
文摘Searching interested images based on visual properties of images is a challenging problem and it has received considerable attention from researchers in the fields like image processing, computer vision and multimedia systems in the last 20 years. While the importance and the effect of the image features like color, texture and shape have been taken into account in many papers, there have not been many studies on the importance of the color spaces on the performance of Content Based Image Retrieval (CBIR) systems. In this paper we first experimentally study the effect of choosing color space on the performance of content based image retrieval using Wavelet decomposition of each color channel. To this end, the retrieval results of different color spaces like RGB, YUV, HSV, YCbCr and Lab are analyzed. Then as a result a new Content Based Retrieval model using Wavelet Transform in Lab color space and Color Moments is proposed. In order to increase the efficiency of the proposed model some division schemes are taken into account which improves the performance of the proposed model. The proposed model tackles one of the important restrictions in content based image retrieval, namely, the challenge between the accuracy of retrieval and its time complexity. The experimental results on two databases [19] [24] demonstrate the superiority of the proposed model compared to existing models.
文摘Line broadening in a diffraction intensity profile of powdered crystalline materials due to stacking fault has been characterized in terms of the zeroth, first, second, third, and fourth moments and the fourth cumulant. Calculations have been derived showing that the first moment causes a shift in the peak position of the profile while the third moment affects its shape. The intensity expression has been derived on the basis of usual Cartesian coordinates and also of polar coordinates indicated by the probability of the fault and the reciprocal lattice parameter as the two axes. The expressions for the fourth cumulant have also been so derived. Here we have used three different approaches to determine methods for calculating the fourth cumulant due to stacking faults. The three forms of the equations derived here are for different coordinate systems, but will arrive at the same answers.
文摘The fitting of lifetime distribution in real-life data has been studied in various fields of research. With the theory of evolution still applicable, more complex data from real-world scenarios will continue to emerge. Despite this, many researchers have made commendable efforts to develop new lifetime distributions that can fit this complex data. In this paper, we utilized the KM-transformation technique to increase the flexibility of the power Lindley distribution, resulting in the Kavya-Manoharan Power Lindley (KMPL) distribution. We study the mathematical treatments of the KMPL distribution in detail and adapt the widely used method of maximum likelihood to estimate the unknown parameters of the KMPL distribution. We carry out a Monte Carlo simulation study to investigate the performance of the Maximum Likelihood Estimates (MLEs) of the parameters of the KMPL distribution. To demonstrate the effectiveness of the KMPL distribution for data fitting, we use a real dataset comprising the waiting time of 100 bank customers. We compare the KMPL distribution with other models that are extensions of the power Lindley distribution. Based on some statistical model selection criteria, the summary results of the analysis were in favor of the KMPL distribution. We further investigate the density fit and probability-probability (p-p) plots to validate the superiority of the KMPL distribution over the competing distributions for fitting the waiting time dataset.