A symplectic reduction method for symplectic G-spaces is given in this paper without using the existence of momentum mappings. By a method similar to the above one, the arthors give a symplectic reduction method for t...A symplectic reduction method for symplectic G-spaces is given in this paper without using the existence of momentum mappings. By a method similar to the above one, the arthors give a symplectic reduction method for the Poisson action of Poisson Lie groups on symplectic manifolds, also without using the existence of momentum mappings. The symplectic reduction method for momentum mappings is thus a special case of the above results.展开更多
Let a connected compact Lie group G act on a connected symplectic orbifold of orbifold fundamental group Г. If the action preserves the symplectic structure and there is a G-equivariant and mod-Г proper momentum map...Let a connected compact Lie group G act on a connected symplectic orbifold of orbifold fundamental group Г. If the action preserves the symplectic structure and there is a G-equivariant and mod-Г proper momentum map for the lifted action on the universal branch covering orbifold, and if the lifted G-action commutes with that of Г, then the symplectic convexity theorem is still true for this kind of lifted Hamiltonian action.展开更多
文摘A symplectic reduction method for symplectic G-spaces is given in this paper without using the existence of momentum mappings. By a method similar to the above one, the arthors give a symplectic reduction method for the Poisson action of Poisson Lie groups on symplectic manifolds, also without using the existence of momentum mappings. The symplectic reduction method for momentum mappings is thus a special case of the above results.
文摘Let a connected compact Lie group G act on a connected symplectic orbifold of orbifold fundamental group Г. If the action preserves the symplectic structure and there is a G-equivariant and mod-Г proper momentum map for the lifted action on the universal branch covering orbifold, and if the lifted G-action commutes with that of Г, then the symplectic convexity theorem is still true for this kind of lifted Hamiltonian action.