In this paper,a monitoring and controlling system for the safety in production and environmental parameters of a small and medium-sized coal mine has been developed after analyzing the current domestic coal production...In this paper,a monitoring and controlling system for the safety in production and environmental parameters of a small and medium-sized coal mine has been developed after analyzing the current domestic coal production and security conditions. The client computer can convert the analog signal about the safety in production and environmental parameters detected from the monitoring terminal into digital signal,and then,send the signal to the coal mine safety monitoring centre. This information can be analyzed,judged,and diagnosed by the monitoring-management-controlling software for helping the manager and technical workers to control the actual underground production and security situations. The system has many advantages including high reliability,better performance of real-time monitoring,faster data communicating and good practicability,and it can effectively prevent the occurrence of safety incidents in coal mines.展开更多
Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitori...Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitoring steep slopes of open-pit mines,the MSARMA method was used to establish analytical models for the monitoring system,given various parameter settings based on the description of mechanical monitoring principles.We used this sensitivity analysis to conclude that the setting of the most sensitive location of a mechanical monitoring system should be within a range of 1/5~1/2 of the lower part in a vertical direction of steep slopes,with a rational and feasible range of the dip angle setting between 0°~20°.Given the analytical results of our on-site experiments,we have shown that the parameters determined reflect the stability of steep slopes accurately and effectively.These conclusions provide a basis for the application of a new type of steep slope stability monitoring technology in open-pit mines.展开更多
An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client co...An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client computer with functions ofsignal acquisition and processing, and a host computer in the central control room.Thesignal acquisition module of the client computer can collect the running parameters fromvarious monitoring terminals in real-time.The DSP high-speed data processing system ofthe main control module can quickly achieve the numerical calculation for the collectedsignal.The signal modulation and signal demodulation are completed by the frequencyshift keying circuit and phase-locked loop frequency circuit, respectively.Finally, the signalis sent to the host computer for logic estimation and diagnostic analysis using the networkcommunication technology, which is helpful for technicians and managers to control therunning state of equipment.展开更多
According to the characteristics of the ther-motechnical parameters such as temperature pressure and glass level for glass melting furnace, the design method for monitoring and controlling these parameters is introduc...According to the characteristics of the ther-motechnical parameters such as temperature pressure and glass level for glass melting furnace, the design method for monitoring and controlling these parameters is introduced in this paper based on MACROMAX-2 concentrated and dis-tributedcontrol system. The configuration of management information and control loop is described, and research tests were performed to check the functions of system.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved ...Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved to be effective as commanding and dispatching system. Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding, which not only realizes real-time status monitoring for underground equipment, but also gets a direct scene for underground surrounding. B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment. Meantime, it can reduce the waste of the data resource.展开更多
Gas metal arc welding(GMAW)is also referred as the metal inert gas(MIG)welding which is a process of welding done by the formation of an electric arc between the consumable wire electrode and the workpiece.Through the...Gas metal arc welding(GMAW)is also referred as the metal inert gas(MIG)welding which is a process of welding done by the formation of an electric arc between the consumable wire electrode and the workpiece.Through the welding process,a continuous flow of inert gas is supplied,and it avoids the weld being subjected to react with atmospheric air.The process can be automatic or semi-automatic where the main input parameters like current and the voltage can be direct and constant,respectively.Not only the current and voltage the welding quality depends on some more input parameters such as arc gap,velocity,and temperature.In this paper,we explain about a setup which is capable of real-time monitoring of input parameters mentioned above and selecting the best MIG welding parameters for the mild steel.The setup is composed of several sensors and microcontrollers for the collection and the measurement of the input parameters.The samples were categorized according to the federate and the voltage adjustment of the selected welding machine.Then the final objective was to identify the samples of the weld with different parameter changes which are monitored through the system.For the analysis,the samples were subjected to tensile and hardness tests,and microstructure tests to find the dependence of the input parameters which effect for the weld quality.Finally,the experimental results verified the effectiveness of the system for the selection of the quality weld.展开更多
Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, ...Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.展开更多
The drilling parameter monitor is an important tool in drilling engineering applied to monitoring drilling process,carrying out scientific analysis and decision--making.Based on discussing the present development situ...The drilling parameter monitor is an important tool in drilling engineering applied to monitoring drilling process,carrying out scientific analysis and decision--making.Based on discussing the present development situation of the domestic and foreign drilling machine parameter monitors,the metering scheme for vehicle--loaded drilling parameter monitor was designed.By using detection system for MSP430 single--chip microcomputer(SCM) in combination with peripheral circuit such as sensors,the drilling--rig control system was obtained to detect,and for every parameter in real--time display in order to keep operating the drilling rig status.The experiment shows that the drilling parameter monitor reaches design requirements and can be applied to drilling engineering monitoring,which has characters such as simple structure,high credibility and low cost.展开更多
The first MT monitoring profile with initial shape both at home and abroad has been built in the northern margin of the Qinghai-Tibet Plateau. Based on MT data observed before and after the eight earthquakes of M=5-7 ...The first MT monitoring profile with initial shape both at home and abroad has been built in the northern margin of the Qinghai-Tibet Plateau. Based on MT data observed before and after the eight earthquakes of M=5-7 from 1988 to 1992,a new parameter-mean resistivity has been introduced. The results show that indicates not only the major feature of decreasing-increasing and recovering to notmal value, but also synchronism of phase or the variation in a large area, 'lead or delay' among different small areas and the amplitude decreasing with the increase of the distance from the epicenter. Two characters mentioned above might correspond to reginal field precursor of the tectonic generating earthquake and field precursor of the tectonic kinematics. This paper analyses the errors of observed data and the cause of variation. The MT profile optimum parameter system consists of parameter,apparent resistivity,twisting degree and the principal-axis azimuth which might provide quantitative criterion for the physical prooes of the great destructive earthquake and moderate and short-term earthquake prediction.展开更多
The warehouse environment parameter monitoring system is designed to avoid the networking and high cost of traditional monitoring system.A sensor error correction model which combines particle swarm optimization(PSO)w...The warehouse environment parameter monitoring system is designed to avoid the networking and high cost of traditional monitoring system.A sensor error correction model which combines particle swarm optimization(PSO)with back propagation(BP)neural network algorithm is established to reduce nonlinear characteristics and improve test accuracy of the system.Simulation and experiments indicate that the PSO-BP neural network algorithm has advantages of fast convergence rate and high diagnostic accuracy.The monitoring system can provide higher measurement precision,lower power consume,stable network data communication and fault diagnoses function.The system has been applied to monitoring environment parameter of warehouse,special vehicles and ships,etc.展开更多
The knowledge on rabbit welfare may be improved by the use of correct tools for monitoring the different aspects of rabbit industrial farming. Therefore, the aim of this study was to define parameters related to healt...The knowledge on rabbit welfare may be improved by the use of correct tools for monitoring the different aspects of rabbit industrial farming. Therefore, the aim of this study was to define parameters related to health and welfare of animals in industrial farms with intensive husbandry. Health, management, environmental and productive parameters were firstly characterized and then a protocol to assess welfare of rabbits was define. The research was conducted on 8 industrial farms from 2004 to 2007 and around 30 inspections were done in each farm. At each visit, the health conditions were established by: (1) necropsy on animals of different productive category; (2) specific laboratory investigations based on the lesions observed; (3) checking the presence of parasites in environmental faecal samples; (4) bacteriological examination of vaginal, nasal and rectal swabs of rabbit of different age. The immune conditions and the efficacy of vaccinations were measured by determining anti-Myxomatosis and anti-Rabbit Haemorrhagic Disease antibodies using competitive ELISAs, and anti-Encephalitozoon cunicoli antibodies by immunocarbonassay. The environmental conditions were evaluated by measuring air temperature, relative humidity, ammonia concentration and bacterial/fungal count. Finally the productive parameters were also recorded and elaborated. All the entered values were then utilized for defining a score system to establish health and welfare conditions.展开更多
For oil and gas pipeline monitoring applications, this paper proposed a dual-parameter fusion distributed fiber optic sensor system that enables distributed temperature and distributed vibration measurements in a sing...For oil and gas pipeline monitoring applications, this paper proposed a dual-parameter fusion distributed fiber optic sensor system that enables distributed temperature and distributed vibration measurements in a single fiber. Through the fiber-scattering spectrum time domain detection combined with coded pulse sequence and Raman scattering spectrum is obtained, which realizes high-resolution temperature measurement and wide-band vibrational wave measurement. The experimental results show that, on 10 km optical fiber measurement, temperature resolution up to 0.1?C and vibration response frequency range 20 Hz - 5 kHz. This sensing system achieves temperature and vibration dual-parameter measurements with fiber optics, greatly simplifying the system and facilitating installation and it can be widely used in oil and gas pipeline monitoring.展开更多
Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national e...Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national economy.Landslides are the most harmful type of pipeline accident,and have directed increasing public attention to safety issues.Although some useful results have been obtained in the investigation and prevention of pipeline-landslide hazards,there remains a need for effective monitoring and early warning methods,especially when the complexity of pipeline-landslides is considered.Because oil and gas pipeline-landslides typically occur in the superficial soil layers,monitoring instruments must be easy to install and must cause minimal disturbance to the surrounding soil and pipeline.To address the particular characteristics of pipelinelandslides,we developed a multi-parameter integrated monitoring system called disaster reduction stick equipment.In this paper,we detail this monitoring and early warning system for pipeline-landslide hazards based on an on-site monitoring network and early warning algorithms.The functionality of our system was verified by its successful application to the Chongqing Loujiazhuang pipeline-landslide in China.The results presented here provide guidelines for the monitoring,early warning,and prevention of pipeline geological hazards.展开更多
The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it diffi...The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it difficult to ensure its structural safety.In this study,a new deformation warning index for reinforced concrete dams was developed according to the prototype monitoring data,statistical models,three-dimensional finite element model(FEM)numerical simulation,and the critical conditions of the dam structure.A statistical model was established to separate the water pressure component.Then,a three-dimensional FEM of the reinforced concrete dam was constructed to simulate the water pressure component.Furthermore,the deformation components that affected the mechanical parameters of the dam under the same amount of reservoir water level change were separated and quantified accurately.In addition,the method for inversion of comprehensive mechanical parameters after dam reinforcement was used.The influence mechanisms of the deformation behavior of concrete dams under the reservoir water level and temperature changes were investigated.A new deformation warning index was developed by combining the forward-simulated critical water pressure component and temperature component in the period of extreme temperature decrease with the aging component separated by the statistical model.The new deformation warning index considers the structural state of the dam before and after reinforcement and links the structural strength criterion and the deformation evolution mechanisms.It provides a theoretical foundation and decision support for long-term service and operation management of reinforced dams.展开更多
The municipalities of Ubatuba, Campos do Jord?o, and S?o José dos Campos are located in the region of S?o Paulo State (Brazil). These municipalities are recognized nationally for having an elevated number of reco...The municipalities of Ubatuba, Campos do Jord?o, and S?o José dos Campos are located in the region of S?o Paulo State (Brazil). These municipalities are recognized nationally for having an elevated number of recorded landslides on slopes and embankments. In addition, these municipalities contain multiple areas that are at risk for landslides. Various soil landslides occurred in these municipalities in January 2013, when real-time climactic and geotechnical variables were monitored by automatic rain gauges, humidity sensors and soil temperature and suction devices. The resulting data were used to understand the functions of each variable in the occurrence of land- slides. Analyses of rainfall, humidity and soil temperature were used with field investigations to formulate a hypothesis regarding the predominant rupture mechanism and the role of each monitored variable in the deflagration of the soil landslides that occurred in the three studied municipalities. The geotechnical variable data revealed that both temperature and soil moisture contents played fundamental roles in the deflagration of shallow planar landslides in urban areas. The hourly rain intensity and/or rainfall accumulation for 24 and/or 72 h were responsible for the deflagration of the landslides that occurred in the studied areas, along with the existing anthropic constraints in the risk areas. Significant variations did not occur in the soil suction data during the landslides, principally due to the unsatisfactory sensor precision when reading field suction between –10 and?–100 kPA (±25%).展开更多
Rock bursts have become one of the most severe risks in underground coal mining and its early warning is an important component in the safety management. Microseismic(MS) monitoring is considered potentially as a powe...Rock bursts have become one of the most severe risks in underground coal mining and its early warning is an important component in the safety management. Microseismic(MS) monitoring is considered potentially as a powerful tool for the early warning of rock burst. In this study, an MS multi-parameter index system was established and the critical values of each index were estimated based on the normalized multi-information warning model of coal-rock dynamic failure. This index system includes bursting strain energy(BSE) index, time-space-magnitude independent information(TSMII) indices and timespace-magnitude compound information(TSMCI) indices. On the basis of this multi-parameter index system, a comprehensive analysis was conducted via introducing the R-value scoring method to calculate the weights of each index. To calibrate the multi-parameter index system and the associated comprehensive analysis, the weights of each index were first confirmed using historical MS data occurred in LW402102 of Hujiahe Coal Mine(China) over a period of four months. This calibrated comprehensive analysis of MS multi-parameter index system was then applied to pre-warn the occurrence of a subsequent rock burst incident in LW 402103. The results demonstrate that this multi-parameter index system combined with the comprehensive analysis are capable of quantitatively pre-warning rock burst risk.展开更多
Macroseismic investigation is presented with a new potential means of investigation in the "digital age". In this paper we studied several cases in the May 12, 2008, Wenchuan M_S8.0 earthquake with a view to...Macroseismic investigation is presented with a new potential means of investigation in the "digital age". In this paper we studied several cases in the May 12, 2008, Wenchuan M_S8.0 earthquake with a view to exploring the feasibility of retrieving intensity, or even strong ground motion parameters, from public monitoring video which was originally deployed for security purposes. We used public monitoring video records from 44 sites across the meizoseismal region and its surroundings to estimate the intensity. By using the video from a bank in Dujiangyan, Sichuan Province and making the simple assumption that ground vibration is in the form of a propagating harmonic wave, we estimated that the local ground motion acceleration was 0.14g.展开更多
Engineering practice has shown that early faults of gearboxes are a leading maintenance cost driver that can easily lower the profit from a wind turbine operation.A novel oil-lubricated electrostatic monitoring of wea...Engineering practice has shown that early faults of gearboxes are a leading maintenance cost driver that can easily lower the profit from a wind turbine operation.A novel oil-lubricated electrostatic monitoring of wear debris for a wind turbine gearbox is presented.The continuous wavelet transform(CWT)is used to eliminate the noises of the original electrostatic signal.The kurtosis and root mean square(RMS)values of the time domain signal are extracted as the characteristic parameters to reflect the deterioration of the gearbox.The overall tendency of electrostatic signals in accelerated life test is analyzed.In the eighth cycle,the abnormal wear in the wind turbine gearbox is detected by electrostatic monitoring.A comparison with the popular MetalScan monitoring is given to illustrate the effectiveness of the electrostatic monitoring method.The results demonstrate that the electrostatic monitoring method can detect the fault accurately.展开更多
Transformers are required to demonstrate the ability to withstand short circuit currents.Over currents caused by short circuit can give rise to windings deformation.In this paper,a novel method is proposed to monitor ...Transformers are required to demonstrate the ability to withstand short circuit currents.Over currents caused by short circuit can give rise to windings deformation.In this paper,a novel method is proposed to monitor the state of transformer windings,which is achieved through on-line detecting the leakage inductance of the windings.Specifically,the mathematical model is established for online identifying the leakage inductance of the windings by applying least square algorithm(LSA) to the equivalent circuit equations.The effect of measurement and model inaccuracy on the identification error is analyzed,and the corrected model is also given to decrease these adverse effect on the results.Finally,dynamic test is carried out to verify our method.The test results clearly show that our method is very accurate even under the fluctuation of load or power factor.Therefore,our method can be effectively used to on-line detect the windings deformation.展开更多
基金supported by Technologies R&D of State Administration of Work Safety (06-399)Technologies R&D of Hunan Province ( No.05FJ4071)
文摘In this paper,a monitoring and controlling system for the safety in production and environmental parameters of a small and medium-sized coal mine has been developed after analyzing the current domestic coal production and security conditions. The client computer can convert the analog signal about the safety in production and environmental parameters detected from the monitoring terminal into digital signal,and then,send the signal to the coal mine safety monitoring centre. This information can be analyzed,judged,and diagnosed by the monitoring-management-controlling software for helping the manager and technical workers to control the actual underground production and security situations. The system has many advantages including high reliability,better performance of real-time monitoring,faster data communicating and good practicability,and it can effectively prevent the occurrence of safety incidents in coal mines.
基金Project 1053G032 supported by the Youth Science Foundation of Educational Committee of Heilongjiang Province
文摘Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitoring steep slopes of open-pit mines,the MSARMA method was used to establish analytical models for the monitoring system,given various parameter settings based on the description of mechanical monitoring principles.We used this sensitivity analysis to conclude that the setting of the most sensitive location of a mechanical monitoring system should be within a range of 1/5~1/2 of the lower part in a vertical direction of steep slopes,with a rational and feasible range of the dip angle setting between 0°~20°.Given the analytical results of our on-site experiments,we have shown that the parameters determined reflect the stability of steep slopes accurately and effectively.These conclusions provide a basis for the application of a new type of steep slope stability monitoring technology in open-pit mines.
基金Supported by the National Hi-tech Research and Development Program of China(2007AA04Z415)the Hunan Province and Xiangtan City Natural Science Joint Foundation(09JJ8005)the Torch Program Project of Hunan Province(2008SH044)
文摘An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client computer with functions ofsignal acquisition and processing, and a host computer in the central control room.Thesignal acquisition module of the client computer can collect the running parameters fromvarious monitoring terminals in real-time.The DSP high-speed data processing system ofthe main control module can quickly achieve the numerical calculation for the collectedsignal.The signal modulation and signal demodulation are completed by the frequencyshift keying circuit and phase-locked loop frequency circuit, respectively.Finally, the signalis sent to the host computer for logic estimation and diagnostic analysis using the networkcommunication technology, which is helpful for technicians and managers to control therunning state of equipment.
文摘According to the characteristics of the ther-motechnical parameters such as temperature pressure and glass level for glass melting furnace, the design method for monitoring and controlling these parameters is introduced in this paper based on MACROMAX-2 concentrated and dis-tributedcontrol system. The configuration of management information and control loop is described, and research tests were performed to check the functions of system.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金Supported by the National Natural Science Foundation of China (51075029)
文摘Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved to be effective as commanding and dispatching system. Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding, which not only realizes real-time status monitoring for underground equipment, but also gets a direct scene for underground surrounding. B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment. Meantime, it can reduce the waste of the data resource.
文摘Gas metal arc welding(GMAW)is also referred as the metal inert gas(MIG)welding which is a process of welding done by the formation of an electric arc between the consumable wire electrode and the workpiece.Through the welding process,a continuous flow of inert gas is supplied,and it avoids the weld being subjected to react with atmospheric air.The process can be automatic or semi-automatic where the main input parameters like current and the voltage can be direct and constant,respectively.Not only the current and voltage the welding quality depends on some more input parameters such as arc gap,velocity,and temperature.In this paper,we explain about a setup which is capable of real-time monitoring of input parameters mentioned above and selecting the best MIG welding parameters for the mild steel.The setup is composed of several sensors and microcontrollers for the collection and the measurement of the input parameters.The samples were categorized according to the federate and the voltage adjustment of the selected welding machine.Then the final objective was to identify the samples of the weld with different parameter changes which are monitored through the system.For the analysis,the samples were subjected to tensile and hardness tests,and microstructure tests to find the dependence of the input parameters which effect for the weld quality.Finally,the experimental results verified the effectiveness of the system for the selection of the quality weld.
文摘Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.
文摘The drilling parameter monitor is an important tool in drilling engineering applied to monitoring drilling process,carrying out scientific analysis and decision--making.Based on discussing the present development situation of the domestic and foreign drilling machine parameter monitors,the metering scheme for vehicle--loaded drilling parameter monitor was designed.By using detection system for MSP430 single--chip microcomputer(SCM) in combination with peripheral circuit such as sensors,the drilling--rig control system was obtained to detect,and for every parameter in real--time display in order to keep operating the drilling rig status.The experiment shows that the drilling parameter monitor reaches design requirements and can be applied to drilling engineering monitoring,which has characters such as simple structure,high credibility and low cost.
文摘The first MT monitoring profile with initial shape both at home and abroad has been built in the northern margin of the Qinghai-Tibet Plateau. Based on MT data observed before and after the eight earthquakes of M=5-7 from 1988 to 1992,a new parameter-mean resistivity has been introduced. The results show that indicates not only the major feature of decreasing-increasing and recovering to notmal value, but also synchronism of phase or the variation in a large area, 'lead or delay' among different small areas and the amplitude decreasing with the increase of the distance from the epicenter. Two characters mentioned above might correspond to reginal field precursor of the tectonic generating earthquake and field precursor of the tectonic kinematics. This paper analyses the errors of observed data and the cause of variation. The MT profile optimum parameter system consists of parameter,apparent resistivity,twisting degree and the principal-axis azimuth which might provide quantitative criterion for the physical prooes of the great destructive earthquake and moderate and short-term earthquake prediction.
文摘The warehouse environment parameter monitoring system is designed to avoid the networking and high cost of traditional monitoring system.A sensor error correction model which combines particle swarm optimization(PSO)with back propagation(BP)neural network algorithm is established to reduce nonlinear characteristics and improve test accuracy of the system.Simulation and experiments indicate that the PSO-BP neural network algorithm has advantages of fast convergence rate and high diagnostic accuracy.The monitoring system can provide higher measurement precision,lower power consume,stable network data communication and fault diagnoses function.The system has been applied to monitoring environment parameter of warehouse,special vehicles and ships,etc.
文摘The knowledge on rabbit welfare may be improved by the use of correct tools for monitoring the different aspects of rabbit industrial farming. Therefore, the aim of this study was to define parameters related to health and welfare of animals in industrial farms with intensive husbandry. Health, management, environmental and productive parameters were firstly characterized and then a protocol to assess welfare of rabbits was define. The research was conducted on 8 industrial farms from 2004 to 2007 and around 30 inspections were done in each farm. At each visit, the health conditions were established by: (1) necropsy on animals of different productive category; (2) specific laboratory investigations based on the lesions observed; (3) checking the presence of parasites in environmental faecal samples; (4) bacteriological examination of vaginal, nasal and rectal swabs of rabbit of different age. The immune conditions and the efficacy of vaccinations were measured by determining anti-Myxomatosis and anti-Rabbit Haemorrhagic Disease antibodies using competitive ELISAs, and anti-Encephalitozoon cunicoli antibodies by immunocarbonassay. The environmental conditions were evaluated by measuring air temperature, relative humidity, ammonia concentration and bacterial/fungal count. Finally the productive parameters were also recorded and elaborated. All the entered values were then utilized for defining a score system to establish health and welfare conditions.
文摘For oil and gas pipeline monitoring applications, this paper proposed a dual-parameter fusion distributed fiber optic sensor system that enables distributed temperature and distributed vibration measurements in a single fiber. Through the fiber-scattering spectrum time domain detection combined with coded pulse sequence and Raman scattering spectrum is obtained, which realizes high-resolution temperature measurement and wide-band vibrational wave measurement. The experimental results show that, on 10 km optical fiber measurement, temperature resolution up to 0.1?C and vibration response frequency range 20 Hz - 5 kHz. This sensing system achieves temperature and vibration dual-parameter measurements with fiber optics, greatly simplifying the system and facilitating installation and it can be widely used in oil and gas pipeline monitoring.
基金financially supported by National Key R&D Program of China (No. 2018YFC1505201)National Natural Science Foundation of China (No. 41901008)+2 种基金Open Fund Project of Key Laboratory of Mountain Hazards and Surface Processes of the Chinese Academy of Sciencesthe Fundamental Research Funds for the Central Universities (Grant NO. 2682018CX05)financially supported by China Scholarship Council
文摘Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national economy.Landslides are the most harmful type of pipeline accident,and have directed increasing public attention to safety issues.Although some useful results have been obtained in the investigation and prevention of pipeline-landslide hazards,there remains a need for effective monitoring and early warning methods,especially when the complexity of pipeline-landslides is considered.Because oil and gas pipeline-landslides typically occur in the superficial soil layers,monitoring instruments must be easy to install and must cause minimal disturbance to the surrounding soil and pipeline.To address the particular characteristics of pipelinelandslides,we developed a multi-parameter integrated monitoring system called disaster reduction stick equipment.In this paper,we detail this monitoring and early warning system for pipeline-landslide hazards based on an on-site monitoring network and early warning algorithms.The functionality of our system was verified by its successful application to the Chongqing Loujiazhuang pipeline-landslide in China.The results presented here provide guidelines for the monitoring,early warning,and prevention of pipeline geological hazards.
基金supported by the National Natural Science Foundation of China(Grants No.52079049,U2243223,51609074,51739003,and 51579086).
文摘The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it difficult to ensure its structural safety.In this study,a new deformation warning index for reinforced concrete dams was developed according to the prototype monitoring data,statistical models,three-dimensional finite element model(FEM)numerical simulation,and the critical conditions of the dam structure.A statistical model was established to separate the water pressure component.Then,a three-dimensional FEM of the reinforced concrete dam was constructed to simulate the water pressure component.Furthermore,the deformation components that affected the mechanical parameters of the dam under the same amount of reservoir water level change were separated and quantified accurately.In addition,the method for inversion of comprehensive mechanical parameters after dam reinforcement was used.The influence mechanisms of the deformation behavior of concrete dams under the reservoir water level and temperature changes were investigated.A new deformation warning index was developed by combining the forward-simulated critical water pressure component and temperature component in the period of extreme temperature decrease with the aging component separated by the statistical model.The new deformation warning index considers the structural state of the dam before and after reinforcement and links the structural strength criterion and the deformation evolution mechanisms.It provides a theoretical foundation and decision support for long-term service and operation management of reinforced dams.
文摘The municipalities of Ubatuba, Campos do Jord?o, and S?o José dos Campos are located in the region of S?o Paulo State (Brazil). These municipalities are recognized nationally for having an elevated number of recorded landslides on slopes and embankments. In addition, these municipalities contain multiple areas that are at risk for landslides. Various soil landslides occurred in these municipalities in January 2013, when real-time climactic and geotechnical variables were monitored by automatic rain gauges, humidity sensors and soil temperature and suction devices. The resulting data were used to understand the functions of each variable in the occurrence of land- slides. Analyses of rainfall, humidity and soil temperature were used with field investigations to formulate a hypothesis regarding the predominant rupture mechanism and the role of each monitored variable in the deflagration of the soil landslides that occurred in the three studied municipalities. The geotechnical variable data revealed that both temperature and soil moisture contents played fundamental roles in the deflagration of shallow planar landslides in urban areas. The hourly rain intensity and/or rainfall accumulation for 24 and/or 72 h were responsible for the deflagration of the landslides that occurred in the studied areas, along with the existing anthropic constraints in the risk areas. Significant variations did not occur in the soil suction data during the landslides, principally due to the unsatisfactory sensor precision when reading field suction between –10 and?–100 kPA (±25%).
基金provided by the State Key Research Development Program of China (No.2016YFC0801403)Key Research Development Program of Jiangsu Provence (No.BE2015040)+1 种基金National Natural Science Foundation of China (Nos.51674253,51734009 and 51604270)Natural Science Foundation of Jiangsu Province (No.BK20171191)
文摘Rock bursts have become one of the most severe risks in underground coal mining and its early warning is an important component in the safety management. Microseismic(MS) monitoring is considered potentially as a powerful tool for the early warning of rock burst. In this study, an MS multi-parameter index system was established and the critical values of each index were estimated based on the normalized multi-information warning model of coal-rock dynamic failure. This index system includes bursting strain energy(BSE) index, time-space-magnitude independent information(TSMII) indices and timespace-magnitude compound information(TSMCI) indices. On the basis of this multi-parameter index system, a comprehensive analysis was conducted via introducing the R-value scoring method to calculate the weights of each index. To calibrate the multi-parameter index system and the associated comprehensive analysis, the weights of each index were first confirmed using historical MS data occurred in LW402102 of Hujiahe Coal Mine(China) over a period of four months. This calibrated comprehensive analysis of MS multi-parameter index system was then applied to pre-warn the occurrence of a subsequent rock burst incident in LW 402103. The results demonstrate that this multi-parameter index system combined with the comprehensive analysis are capable of quantitatively pre-warning rock burst risk.
文摘Macroseismic investigation is presented with a new potential means of investigation in the "digital age". In this paper we studied several cases in the May 12, 2008, Wenchuan M_S8.0 earthquake with a view to exploring the feasibility of retrieving intensity, or even strong ground motion parameters, from public monitoring video which was originally deployed for security purposes. We used public monitoring video records from 44 sites across the meizoseismal region and its surroundings to estimate the intensity. By using the video from a bank in Dujiangyan, Sichuan Province and making the simple assumption that ground vibration is in the form of a propagating harmonic wave, we estimated that the local ground motion acceleration was 0.14g.
基金co-supported by the National Natural Science Foundation of China(Nos.61403198,BK20140827 and U1233114)the Funding of Jiangsu Innovation Program for Graduate Education(No.KYLX15_0313)+1 种基金the Fundamental Research Funds for the Central Universities(No.NS2015072)the support provided by China Scholarship Council(No.201606830028)
文摘Engineering practice has shown that early faults of gearboxes are a leading maintenance cost driver that can easily lower the profit from a wind turbine operation.A novel oil-lubricated electrostatic monitoring of wear debris for a wind turbine gearbox is presented.The continuous wavelet transform(CWT)is used to eliminate the noises of the original electrostatic signal.The kurtosis and root mean square(RMS)values of the time domain signal are extracted as the characteristic parameters to reflect the deterioration of the gearbox.The overall tendency of electrostatic signals in accelerated life test is analyzed.In the eighth cycle,the abnormal wear in the wind turbine gearbox is detected by electrostatic monitoring.A comparison with the popular MetalScan monitoring is given to illustrate the effectiveness of the electrostatic monitoring method.The results demonstrate that the electrostatic monitoring method can detect the fault accurately.
基金This work was supported in part by National Natural Science Foundation of China(No.50577050).
文摘Transformers are required to demonstrate the ability to withstand short circuit currents.Over currents caused by short circuit can give rise to windings deformation.In this paper,a novel method is proposed to monitor the state of transformer windings,which is achieved through on-line detecting the leakage inductance of the windings.Specifically,the mathematical model is established for online identifying the leakage inductance of the windings by applying least square algorithm(LSA) to the equivalent circuit equations.The effect of measurement and model inaccuracy on the identification error is analyzed,and the corrected model is also given to decrease these adverse effect on the results.Finally,dynamic test is carried out to verify our method.The test results clearly show that our method is very accurate even under the fluctuation of load or power factor.Therefore,our method can be effectively used to on-line detect the windings deformation.