In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge...In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge services to their academic fraternity. Spanning across the Great East Road campus, UNZA has established one of the most extensive computer networks in Zambia, serving a burgeoning community of over 20,000 active users through a Metropolitan Area Network (MAN). However, as the digital landscape continues to evolve, it is besieged with burgeoning challenges that threaten the very fabric of network integrity—cyber security threats and the imperatives of maintaining high Quality of Service (QoS). In an effort to mitigate these threats and ensure network efficiency, the development of a mobile application to monitor temperatures in the server room was imperative. According to L. Wei, X. Zeng, and T. Shen, the use of wireless sensory networks to monitor the temperature of train switchgear contact points represents a cost-effective solution. The system is based on wireless communication technology and is detailed in their paper, “A wireless solution for train switchgear contact temperature monitoring and alarming system based on wireless communication technology”, published in the International Journal of Communications, Network and System Sciences, vol. 8, no. 4, pp. 79-87, 2015 [1]. Therefore, in this study, a mobile application technology was explored for monitoring of temperatures in the server room in order to aid Cisco device performance. Additionally, this paper also explores the hardening of Cisco device security and QoS which are the cornerstones of this study.展开更多
BACKGROUND Obstructive sleep apnea-hypopnea syndrome(OSAHS)is primarily caused by airway obstruction due to narrowing and blockage in the nasal and nasopha-ryngeal,oropharyngeal,soft palate,and tongue base areas.The m...BACKGROUND Obstructive sleep apnea-hypopnea syndrome(OSAHS)is primarily caused by airway obstruction due to narrowing and blockage in the nasal and nasopha-ryngeal,oropharyngeal,soft palate,and tongue base areas.The mid-frequency anti-snoring device is a new technology based on sublingual nerve stimulation.Its principle is to improve the degree of oropharyngeal airway stenosis in OSAHS patients under mid-frequency wave stimulation.Nevertheless,there is a lack of clinical application and imaging evidence.METHODS We selected 50 patients diagnosed with moderate OSAHS in our hospital between July 2022 and August 2023.They underwent a 4-wk treatment regimen involving the mid-frequency anti-snoring device during nighttime sleep.Following the treatment,we monitored and assessed the sleep apnea quality of life index and Epworth Sleepiness Scale scores.Additionally,we performed computed tomo-graphy scans of the oropharynx in the awake state,during snoring,and while using the mid-frequency anti-snoring device.Cross-sectional area measurements in different states were taken at the narrowest airway point in the soft palate posterior and retrolingual areas.RESULTS Compared to pretreatment measurements,patients exhibited a significant reduction in the apnea-hypopnea index,the percentage of time with oxygen saturation below 90%,snoring frequency,and the duration of the most prolonged apnea event.The lowest oxygen saturation showed a notable increase,and both sleep apnea quality of life index and Epworth Sleepiness Scale scores improved.Oropharyngeal computed tomography scans revealed that in OSAHS patients cross-sectional areas of the oropharyngeal airway in the soft palate posterior area and retrolingual area decreased during snoring compared to the awake state.Conversely,during mid-frequency anti-snoring device treatment,these areas increased compared to snoring.CONCLUSION The mid-frequency anti-snoring device demonstrates the potential to enhance various sleep parameters in patients with moderate OSAHS,thereby improving their quality of life and reducing daytime sleepiness.These therapeutic effects are attributed to the device’s ability to ameliorate the narrowing of the oropharynx in OSAHS patients.展开更多
This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In additio...This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.展开更多
Background:Dihydrogen(H_(2))is produced endogenously by the intestinal microbiota through the fermentation of diet carbohydrates.Over the past few years,numer-ous studies have demonstrated the significant therapeutic ...Background:Dihydrogen(H_(2))is produced endogenously by the intestinal microbiota through the fermentation of diet carbohydrates.Over the past few years,numer-ous studies have demonstrated the significant therapeutic potential of H_(2)in various pathophysiological contexts,making the characterization of its production in labora-tory species of major preclinical importance.Methods:This study proposes an innovative solution to accurately monitor H_(2)pro-duction in free-moving rodents while respecting animal welfare standards.The devel-oped device consisted of a wire rodent cage placed inside an airtight chamber in which the air quality was maintained,and the H_(2)concentration was continuously analyzed.After the airtightness and efficiency of the systems used to control and maintain air quality in the chamber were checked,tests were carried out on rats and mice with different metabolic phenotypes,over 12 min to 1-h experiments and repeatedly.H_(2)production rates(HPR)were obtained using an easy calculation algorithm based on a first-order moving average.Results:HPR in hyperphagic Zucker rats was found to be twice as high as in control Wistar rats,respectively,2.64 and 1.27 nmol.s^(−1)per animal.In addition,the ingestion of inulin,a dietary fiber,stimulated H_(2)production in mice.HPRs were 0.46 nmol.s^(−1)for animals under control diet and 1.99 nmol.s^(−1)for animals under inulin diet.Conclusions:The proposed device coupled with our algorithm enables fine analysis of the metabolic phenotype of laboratory rats or mice with regard to their endogenous H_(2)production.展开更多
This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design co...This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses.展开更多
Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical...Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical events.Early diagnosis of arrhythmias,particularly AF and ventricular arrhythmias,is very important for the treatment and prognosis of patients.Holter is a gold standard commonly recommended for noninvasive detection of paroxysmal arrhythmia.However,it has some shortcomings such as fixed detection timings,delayed report and inability of remote real-time detection.To deal with such problems,we designed and applied a new wearable 72-hour triple-lead H3-electrocardiogram(ECG)device with a remote cloud-based ECG platform and an expertsupporting system.In this study,31 patients were recruited and 24-hour synchronous ECG data by H3-ECG and Holter were recorded.In the H3-ECG group,ECG signals were transmitted using remote real-time modes,and confirmed reports were made by doctors in the remote expert-supporting system,while the traditional modes and detection systems were used in the Holter group.The results showed no significant differences between the two groups in 24-hour total heart rate(HR),averaged HR,maximum HR,minimum HR,premature atrial complexes(PACs)and premature ventricular complexes(PVCs)(P>0.05).The sensitivity and specificity of capture and remote automatic cardiac events detection of PACs,PVCs,and AF by H3-ECG were 93%and 99%,98%and 99%,94%and 98%,respectively.Therefore,the long-term limb triple-lead H3-ECG device can be utilized for domiciliary ECG self-monitoring and remote management of patients with common arrhythmia under medical supervision.展开更多
Effective storage,processing and analyzing of power device condition monitoring data faces enormous challenges.A framework is proposed that can support both MapReduce and Graph for massive monitoring data analysis at ...Effective storage,processing and analyzing of power device condition monitoring data faces enormous challenges.A framework is proposed that can support both MapReduce and Graph for massive monitoring data analysis at the same time based on Aliyun DTplus platform.First,power device condition monitoring data storage based on MaxCompute table and parallel permutation entropy feature extraction based on MaxCompute MapReduce are designed and implemented on DTplus platform.Then,Graph based k-means algorithm is implemented and used for massive condition monitoring data clustering analysis.Finally,performance tests are performed to compare the execution time between serial program and parallel program.Performance is analyzed from CPU cores consumption,memory utilization and parallel granularity.Experimental results show that the designed framework and parallel algorithms can efficiently process massive power device condition monitoring data.展开更多
Road Traffic monitoring involves the collection of data describing the characteristic of vehicles and their movement through road networks. Such data may be used for one of these purposes such as law enforcement, cong...Road Traffic monitoring involves the collection of data describing the characteristic of vehicles and their movement through road networks. Such data may be used for one of these purposes such as law enforcement, congestion and incident detection and increasing road capacity. Transportation is a requirement for every nation regardless of its economy, political stability, population size and technological development. Movement of goods and people from one place to another is crucial to maintain strong economic and political ties between the various components of any given nation among nations. However, there are different modes of transportation and the most paramount one to human beings is road transportation. Due to increase in the modes of transportation, road users encounter different problems such as road blockage and incidents. Therefore there is need to monitor users incidents and to know the causes. Road traffic monitoring can be done manually or using ICT devices. This paper focuses on how the use of ICT devices can enhance road traffic monitoring. It traces the brief history of transportation;it equally discussed road traffic and safety, tools for monitoring road traffic, Intelligent Transportation Systems (ITS) use for traffic monitoring and their benefits. The result shows that the use of ICT devices in road traffic monitoring should be a Millennium Goal for all developed and developing countries because of its numerous advantages in the reduction of the intensity of traffic and other road incidents.展开更多
Background: With the rapid aging of society, the number of patients with heart failure has also increased. Implantable devices for heart failure have become standardized. Remote monitoring using cardiac devices has gr...Background: With the rapid aging of society, the number of patients with heart failure has also increased. Implantable devices for heart failure have become standardized. Remote monitoring using cardiac devices has grown in popularity for medical efficiency and the early detection of abnormalities. Our first aim was to develop a tablet-PC-based nursing intervention program for patients requiring remote monitoring of implantable cardiac devices. The second purpose was to evaluate the efficacy of the program by using mixed-methods research. Methods: The study consisted of two phases. In phase 1, we designed a tablet-PC-based nursing intervention program, on the basis of a literature review and qualitative data collected via semi-structured interviews. In phase 2, we conducted a randomized controlled trial that served as a preliminary investigation of the program. The outcome measures were readmission, unexpected visits to the clinic for heart problems, quality of life, self-care behavior, and self-efficacy. After the study, we interviewed each participant about his or her experiences with the program. Interviews were audio recorded, coded, and thematically analyzed. Results: The 33 patients with heart failure were randomized into two groups as follows: 17 patients in the telenursing group and 16 in the control group. During 6 months of follow-up, the readmission for heart failure occurred in 11% of the intervention group and 18% of the control group. There were no statistically significant differences between the groups at any outcome measures. Three themes were extracted via qualitative analysis: “getting a sense of safety,” “triggering a health behavior change,” and “feeling like a burden.” Conclusion: No improvements in rates of rehospitalization or unexpected clinic visits were seen in the quantitative study. However, signs of behavior modification were seen in the qualitative study. This program has the possibility of improving patient outcomes.展开更多
Glaucoma is a neurodegenerative condition that is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is the main risk factor for the development and progression of the disease. ...Glaucoma is a neurodegenerative condition that is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is the main risk factor for the development and progression of the disease. Methods to lower IOP remain the first line treatments for the condition. Current methods of IOP measurement do not permit temporary noninvasive monitoring 24-hour IOP on a periodic basis. Ongoing research will in time provide a means of developing a device that will enable continuous or temporary monitoring of IOP. At present a device suitable for clinical use is not yet available.This review contains a description of different devices currently in development for measuring IOP: soft contact lens, LC resonant circuits and on-chip sensing devices. All of them use application-specific integrated circuits (ASICS) to process the measured signals and send them to recording devices. Soft contact lens devices are based on an embedded strain gauge, LC circuits vary their resonance frequency depending on the intraocular pressure (IOP) and, finally, on-chip sensing devices include an integrated microelectromechanical sensor (MEMS). MEMS are capacitors whose capacity varies with IOP. These devices allow for an accurate IOP measurement (up to +/– 0.2 mm Hg) with high sampling rates (up to 1 sample/min) and storing 1 week of raw data. All of them operate in an autonomous way and even some of them are energetically independent.展开更多
The field of digital audio forensics aims to detect threats and fraud in audio signals.Contemporary audio forensic techniques use digital signal processing to detect the authenticity of recorded speech,recognize speak...The field of digital audio forensics aims to detect threats and fraud in audio signals.Contemporary audio forensic techniques use digital signal processing to detect the authenticity of recorded speech,recognize speakers,and recognize recording devices.User-generated audio recordings from mobile phones are very helpful in a number of forensic applications.This article proposed a novel method for recognizing recording devices based on recorded audio signals.First,a database of the features of various recording devices was constructed using 32 recording devices(20 mobile phones of different brands and 12 kinds of recording pens)in various environments.Second,the audio features of each recording device,such as the Mel-frequency cepstral coefficients(MFCC),were extracted from the audio signals and used as model inputs.Finally,support vector machines(SVM)with fractional Gaussian kernel were used to recognize the recording devices from their audio features.Experiments demonstrated that the proposed method had a 93.4%accuracy in recognizing recording devices.展开更多
Semi-invasive blood sampling devices mimic the way female mosquitoes extract blood from a host. They generally consist of a microneedle, a microactuator for needle insertion, a blood extraction mechanism and a blood g...Semi-invasive blood sampling devices mimic the way female mosquitoes extract blood from a host. They generally consist of a microneedle, a microactuator for needle insertion, a blood extraction mechanism and a blood glucose sensor. These devices have great potential to overcome the major disadvantages of several current blood glucose monitoring methods. Over last two decades, extensive research has been made in all of these related fields. More recently, several wearable devices for semi-invasive blood sampling have been developed. This review aims at summarizing the current state-of-the-art development and utilization of such wearable devices for continuous monitoring of blood glucose levels, with a special attention on design considerations, fabrication technologies and testing methods.展开更多
This peper proposes a new type of dynamic ECG (Holier) monitoring andrecording system based on technology or computer controlling and high storage capacitydynamic RAM (DRAM). The system realizes the monitoring and rec...This peper proposes a new type of dynamic ECG (Holier) monitoring andrecording system based on technology or computer controlling and high storage capacitydynamic RAM (DRAM). The system realizes the monitoring and recording ECG signalscontinuously up to 24 hours with the double error criterion ECG data compression algorithm or time error and amplitude error[1], adaptive algorithm for detecting andanalysing the oRS complexes[2] and the technology of high storage capacity DRAM. Itsadvantages are high storage Capacity (4MB), low power dissipation (less titan 30mA).展开更多
Copper Zinc Antimony Sulfide(CZAS)is derived from Copper Antimony Sulfide(CAS),a famatinite class of compound.In the current paper,the first step for using Copper,Zinc,Antimony and Sulfide as materials in manufacturin...Copper Zinc Antimony Sulfide(CZAS)is derived from Copper Antimony Sulfide(CAS),a famatinite class of compound.In the current paper,the first step for using Copper,Zinc,Antimony and Sulfide as materials in manufacturing synchrotronic biosensor-namely increasing the sensitivity of biosensor through creating Copper Zinc Antimony Sulfide,CZAS(Cu1.18Zn0.40Sb1.90S7.2)semiconductor and using it instead of Copper Tin Sulfide,CTS(Cu2SnS3)for tracking,monitoring,imaging,measuring,diagnosing and detecting cancer cells,is evaluated.Further,optimization of tris(2,2'-bipyridyl)ruthenium(II)(Ru(bpy)32+)concentrations and Copper Zinc Antimony Sulfide,CZAS(Cu1.18Zn0.40Sb1.90S7.2)semiconductor as two main and effective materials in the intensity of synchrotron for tracking,monitoring,imaging,measuring,diagnosing and detecting cancer cells are considered so that the highest sensitivity obtains.In this regard,various concentrations of two materials were prepared and photon emission was investigated in the absence of cancer cells.On the other hand,ccancer diagnosis requires the analysis of images and attributes as well as collecting many clinical and mammography variables.In diagnosis of cancer,it is important to determine whether a tumor is benign or malignant.The information about cancer risk prediction along with the type of tumor are crucial for patients and effective medical decision making.An ideal diagnostic system could effectively distinguish between benign and malignant cells;however,such a system has not been created yet.In this study,a model is developed to improve the prediction probability of cancer.It is necessary to have such a prediction model as the survival probability of cancer is high when patients are diagnosed at early stages.展开更多
With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monit...With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monitoring,and pre-diagnostics.This paper reviews the recent progress in sweat biosensors and sensing systems integrated into textiles for wearable body status monitoring.The mechanisms of biosensors that are commonly adopted for biomarkers analysis are first introduced.The classification,fabrication methods,and applications of textile conductors in different configurations and dimensions are then summarized.Afterward,innovative strategies to achieve efficient sweat collection with textile-based sensing patches are presented,followed by an in-depth discussion on nanoengineering and system integration approaches for the enhancement of sensing performance.Finally,the challenges of textile-based sweat sensing devices associated with the device reusability,washability,stability,and fabrication reproducibility are discussed from the perspective of their practical applications in wearable healthcare.展开更多
Systemic blood circulation is one of life activity’s most important physiological functions.Continuous noninvasive hemodynamicmonitoring is essential for the management of cardiovascular status.However,it is difficul...Systemic blood circulation is one of life activity’s most important physiological functions.Continuous noninvasive hemodynamicmonitoring is essential for the management of cardiovascular status.However,it is difficult to achieve systemichemodynamic monitoring with the daily use of current devices due to the lack of multichannel and time-synchronized operationcapability over the whole body.Here,we utilize a soft microfiber Bragg grating group to monitor spatiotemporalhemodynamics by taking advantage of the high sensitivity,electromagnetic immunity,and great temporal synchronizationbetween multiple remote sensor nodes.A continuous systemic hemodynamic measurement technique is developedusing all-mechanical physiological signals,such as ballistocardiogram signals and pulse waves,to illustrate the actualmechanical process of blood circulation.Multiple hemodynamic parameters,such as systemic pulse transit time,heartrate,blood pressure,and peripheral resistance,are monitored using skin-like microfiber Bragg grating patches conformallyattached at different body locations.Relying on the soft microfiber Bragg grating group,the spatiotemporal hemodynamicmonitoring technique opens up new possibilities in clinical medical diagnosis and daily health management.展开更多
Advanced in wireless technologies and flexible materials with great biocompatibility,wearable devices have been utilized in the field of healthcare,sports management,and diseases prevention,which have been widely appl...Advanced in wireless technologies and flexible materials with great biocompatibility,wearable devices have been utilized in the field of healthcare,sports management,and diseases prevention,which have been widely applied in current electronic equipment.Sweat,as a common metabolite on the skin surface,contains a wealth of biomarkers for disease detection and diagnosis.Therefore,developing wearable sweat sensors can provide a non⁃invasive method for health data collecting,sports monitoring,and clinical diagnosis in a convenient way.Recent research in sweat metabolomics has offered a lot of information for sweat analysis and the wearable sweat sensors with small size,various sensing,and transmission units,and good skin contact has exhibited dynamic multi⁃signal detection.This article introduces the biomarkers in sweat related to different diseases and the current development of sweat sensors for users activation monitoring and diseases detection.The barriers and difficulties in the future are also discussed and perspectives in the next generation sweat sensors are proposed.展开更多
文摘In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge services to their academic fraternity. Spanning across the Great East Road campus, UNZA has established one of the most extensive computer networks in Zambia, serving a burgeoning community of over 20,000 active users through a Metropolitan Area Network (MAN). However, as the digital landscape continues to evolve, it is besieged with burgeoning challenges that threaten the very fabric of network integrity—cyber security threats and the imperatives of maintaining high Quality of Service (QoS). In an effort to mitigate these threats and ensure network efficiency, the development of a mobile application to monitor temperatures in the server room was imperative. According to L. Wei, X. Zeng, and T. Shen, the use of wireless sensory networks to monitor the temperature of train switchgear contact points represents a cost-effective solution. The system is based on wireless communication technology and is detailed in their paper, “A wireless solution for train switchgear contact temperature monitoring and alarming system based on wireless communication technology”, published in the International Journal of Communications, Network and System Sciences, vol. 8, no. 4, pp. 79-87, 2015 [1]. Therefore, in this study, a mobile application technology was explored for monitoring of temperatures in the server room in order to aid Cisco device performance. Additionally, this paper also explores the hardening of Cisco device security and QoS which are the cornerstones of this study.
文摘BACKGROUND Obstructive sleep apnea-hypopnea syndrome(OSAHS)is primarily caused by airway obstruction due to narrowing and blockage in the nasal and nasopha-ryngeal,oropharyngeal,soft palate,and tongue base areas.The mid-frequency anti-snoring device is a new technology based on sublingual nerve stimulation.Its principle is to improve the degree of oropharyngeal airway stenosis in OSAHS patients under mid-frequency wave stimulation.Nevertheless,there is a lack of clinical application and imaging evidence.METHODS We selected 50 patients diagnosed with moderate OSAHS in our hospital between July 2022 and August 2023.They underwent a 4-wk treatment regimen involving the mid-frequency anti-snoring device during nighttime sleep.Following the treatment,we monitored and assessed the sleep apnea quality of life index and Epworth Sleepiness Scale scores.Additionally,we performed computed tomo-graphy scans of the oropharynx in the awake state,during snoring,and while using the mid-frequency anti-snoring device.Cross-sectional area measurements in different states were taken at the narrowest airway point in the soft palate posterior and retrolingual areas.RESULTS Compared to pretreatment measurements,patients exhibited a significant reduction in the apnea-hypopnea index,the percentage of time with oxygen saturation below 90%,snoring frequency,and the duration of the most prolonged apnea event.The lowest oxygen saturation showed a notable increase,and both sleep apnea quality of life index and Epworth Sleepiness Scale scores improved.Oropharyngeal computed tomography scans revealed that in OSAHS patients cross-sectional areas of the oropharyngeal airway in the soft palate posterior area and retrolingual area decreased during snoring compared to the awake state.Conversely,during mid-frequency anti-snoring device treatment,these areas increased compared to snoring.CONCLUSION The mid-frequency anti-snoring device demonstrates the potential to enhance various sleep parameters in patients with moderate OSAHS,thereby improving their quality of life and reducing daytime sleepiness.These therapeutic effects are attributed to the device’s ability to ameliorate the narrowing of the oropharynx in OSAHS patients.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No.2022M3J7A1062940,2021R1A5A6002853,and 2021R1A2C3011585)supported by the Technology Innovation Program (20015577)funded by the Ministry of Trade,Industry&Energy (MOTIE,Korea)。
文摘This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.
基金UniversitéGrenoble Alpes through the Cross Disciplinary Program(CDTools)“My Health Companions”.
文摘Background:Dihydrogen(H_(2))is produced endogenously by the intestinal microbiota through the fermentation of diet carbohydrates.Over the past few years,numer-ous studies have demonstrated the significant therapeutic potential of H_(2)in various pathophysiological contexts,making the characterization of its production in labora-tory species of major preclinical importance.Methods:This study proposes an innovative solution to accurately monitor H_(2)pro-duction in free-moving rodents while respecting animal welfare standards.The devel-oped device consisted of a wire rodent cage placed inside an airtight chamber in which the air quality was maintained,and the H_(2)concentration was continuously analyzed.After the airtightness and efficiency of the systems used to control and maintain air quality in the chamber were checked,tests were carried out on rats and mice with different metabolic phenotypes,over 12 min to 1-h experiments and repeatedly.H_(2)production rates(HPR)were obtained using an easy calculation algorithm based on a first-order moving average.Results:HPR in hyperphagic Zucker rats was found to be twice as high as in control Wistar rats,respectively,2.64 and 1.27 nmol.s^(−1)per animal.In addition,the ingestion of inulin,a dietary fiber,stimulated H_(2)production in mice.HPRs were 0.46 nmol.s^(−1)for animals under control diet and 1.99 nmol.s^(−1)for animals under inulin diet.Conclusions:The proposed device coupled with our algorithm enables fine analysis of the metabolic phenotype of laboratory rats or mice with regard to their endogenous H_(2)production.
基金the NSF CCSS-2152638 and the IEN Center Grant from the Institute for Electronics and Nanotechnology at Georgia Tech.
文摘This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses.
基金This research was funded by the Key Research and Development Plan of Jiangsu Province under grant BE2017735.Q.S.conceived the study and wrote the manuscript.Q.S.,C.C.,H.G.X.W.collected,analyzed,and interpreted the data.H.G.and X.W.contributed substantially to the development of ECG signal conversion Matlab software and remote automatic detection algorithm.J.L.,M.C.and C.L.revised the manuscript,evaluated and supervised the study.
文摘Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical events.Early diagnosis of arrhythmias,particularly AF and ventricular arrhythmias,is very important for the treatment and prognosis of patients.Holter is a gold standard commonly recommended for noninvasive detection of paroxysmal arrhythmia.However,it has some shortcomings such as fixed detection timings,delayed report and inability of remote real-time detection.To deal with such problems,we designed and applied a new wearable 72-hour triple-lead H3-electrocardiogram(ECG)device with a remote cloud-based ECG platform and an expertsupporting system.In this study,31 patients were recruited and 24-hour synchronous ECG data by H3-ECG and Holter were recorded.In the H3-ECG group,ECG signals were transmitted using remote real-time modes,and confirmed reports were made by doctors in the remote expert-supporting system,while the traditional modes and detection systems were used in the Holter group.The results showed no significant differences between the two groups in 24-hour total heart rate(HR),averaged HR,maximum HR,minimum HR,premature atrial complexes(PACs)and premature ventricular complexes(PVCs)(P>0.05).The sensitivity and specificity of capture and remote automatic cardiac events detection of PACs,PVCs,and AF by H3-ECG were 93%and 99%,98%and 99%,94%and 98%,respectively.Therefore,the long-term limb triple-lead H3-ECG device can be utilized for domiciliary ECG self-monitoring and remote management of patients with common arrhythmia under medical supervision.
基金This work has been supported by.Central University Research Fund(No.2016MS116,No.2016MS117,No.2018MS074)the National Natural Science Foundation(51677072).
文摘Effective storage,processing and analyzing of power device condition monitoring data faces enormous challenges.A framework is proposed that can support both MapReduce and Graph for massive monitoring data analysis at the same time based on Aliyun DTplus platform.First,power device condition monitoring data storage based on MaxCompute table and parallel permutation entropy feature extraction based on MaxCompute MapReduce are designed and implemented on DTplus platform.Then,Graph based k-means algorithm is implemented and used for massive condition monitoring data clustering analysis.Finally,performance tests are performed to compare the execution time between serial program and parallel program.Performance is analyzed from CPU cores consumption,memory utilization and parallel granularity.Experimental results show that the designed framework and parallel algorithms can efficiently process massive power device condition monitoring data.
文摘Road Traffic monitoring involves the collection of data describing the characteristic of vehicles and their movement through road networks. Such data may be used for one of these purposes such as law enforcement, congestion and incident detection and increasing road capacity. Transportation is a requirement for every nation regardless of its economy, political stability, population size and technological development. Movement of goods and people from one place to another is crucial to maintain strong economic and political ties between the various components of any given nation among nations. However, there are different modes of transportation and the most paramount one to human beings is road transportation. Due to increase in the modes of transportation, road users encounter different problems such as road blockage and incidents. Therefore there is need to monitor users incidents and to know the causes. Road traffic monitoring can be done manually or using ICT devices. This paper focuses on how the use of ICT devices can enhance road traffic monitoring. It traces the brief history of transportation;it equally discussed road traffic and safety, tools for monitoring road traffic, Intelligent Transportation Systems (ITS) use for traffic monitoring and their benefits. The result shows that the use of ICT devices in road traffic monitoring should be a Millennium Goal for all developed and developing countries because of its numerous advantages in the reduction of the intensity of traffic and other road incidents.
文摘Background: With the rapid aging of society, the number of patients with heart failure has also increased. Implantable devices for heart failure have become standardized. Remote monitoring using cardiac devices has grown in popularity for medical efficiency and the early detection of abnormalities. Our first aim was to develop a tablet-PC-based nursing intervention program for patients requiring remote monitoring of implantable cardiac devices. The second purpose was to evaluate the efficacy of the program by using mixed-methods research. Methods: The study consisted of two phases. In phase 1, we designed a tablet-PC-based nursing intervention program, on the basis of a literature review and qualitative data collected via semi-structured interviews. In phase 2, we conducted a randomized controlled trial that served as a preliminary investigation of the program. The outcome measures were readmission, unexpected visits to the clinic for heart problems, quality of life, self-care behavior, and self-efficacy. After the study, we interviewed each participant about his or her experiences with the program. Interviews were audio recorded, coded, and thematically analyzed. Results: The 33 patients with heart failure were randomized into two groups as follows: 17 patients in the telenursing group and 16 in the control group. During 6 months of follow-up, the readmission for heart failure occurred in 11% of the intervention group and 18% of the control group. There were no statistically significant differences between the groups at any outcome measures. Three themes were extracted via qualitative analysis: “getting a sense of safety,” “triggering a health behavior change,” and “feeling like a burden.” Conclusion: No improvements in rates of rehospitalization or unexpected clinic visits were seen in the quantitative study. However, signs of behavior modification were seen in the qualitative study. This program has the possibility of improving patient outcomes.
文摘Glaucoma is a neurodegenerative condition that is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is the main risk factor for the development and progression of the disease. Methods to lower IOP remain the first line treatments for the condition. Current methods of IOP measurement do not permit temporary noninvasive monitoring 24-hour IOP on a periodic basis. Ongoing research will in time provide a means of developing a device that will enable continuous or temporary monitoring of IOP. At present a device suitable for clinical use is not yet available.This review contains a description of different devices currently in development for measuring IOP: soft contact lens, LC resonant circuits and on-chip sensing devices. All of them use application-specific integrated circuits (ASICS) to process the measured signals and send them to recording devices. Soft contact lens devices are based on an embedded strain gauge, LC circuits vary their resonance frequency depending on the intraocular pressure (IOP) and, finally, on-chip sensing devices include an integrated microelectromechanical sensor (MEMS). MEMS are capacitors whose capacity varies with IOP. These devices allow for an accurate IOP measurement (up to +/– 0.2 mm Hg) with high sampling rates (up to 1 sample/min) and storing 1 week of raw data. All of them operate in an autonomous way and even some of them are energetically independent.
基金supported by the Jiangsu University Student Training Program[SJCX19_0529]the research fund of Nanjing Institute of Engineering[CXY201931]the National Natural Science Foundation of China(61871213).
文摘The field of digital audio forensics aims to detect threats and fraud in audio signals.Contemporary audio forensic techniques use digital signal processing to detect the authenticity of recorded speech,recognize speakers,and recognize recording devices.User-generated audio recordings from mobile phones are very helpful in a number of forensic applications.This article proposed a novel method for recognizing recording devices based on recorded audio signals.First,a database of the features of various recording devices was constructed using 32 recording devices(20 mobile phones of different brands and 12 kinds of recording pens)in various environments.Second,the audio features of each recording device,such as the Mel-frequency cepstral coefficients(MFCC),were extracted from the audio signals and used as model inputs.Finally,support vector machines(SVM)with fractional Gaussian kernel were used to recognize the recording devices from their audio features.Experiments demonstrated that the proposed method had a 93.4%accuracy in recognizing recording devices.
文摘Semi-invasive blood sampling devices mimic the way female mosquitoes extract blood from a host. They generally consist of a microneedle, a microactuator for needle insertion, a blood extraction mechanism and a blood glucose sensor. These devices have great potential to overcome the major disadvantages of several current blood glucose monitoring methods. Over last two decades, extensive research has been made in all of these related fields. More recently, several wearable devices for semi-invasive blood sampling have been developed. This review aims at summarizing the current state-of-the-art development and utilization of such wearable devices for continuous monitoring of blood glucose levels, with a special attention on design considerations, fabrication technologies and testing methods.
文摘This peper proposes a new type of dynamic ECG (Holier) monitoring andrecording system based on technology or computer controlling and high storage capacitydynamic RAM (DRAM). The system realizes the monitoring and recording ECG signalscontinuously up to 24 hours with the double error criterion ECG data compression algorithm or time error and amplitude error[1], adaptive algorithm for detecting andanalysing the oRS complexes[2] and the technology of high storage capacity DRAM. Itsadvantages are high storage Capacity (4MB), low power dissipation (less titan 30mA).
文摘Copper Zinc Antimony Sulfide(CZAS)is derived from Copper Antimony Sulfide(CAS),a famatinite class of compound.In the current paper,the first step for using Copper,Zinc,Antimony and Sulfide as materials in manufacturing synchrotronic biosensor-namely increasing the sensitivity of biosensor through creating Copper Zinc Antimony Sulfide,CZAS(Cu1.18Zn0.40Sb1.90S7.2)semiconductor and using it instead of Copper Tin Sulfide,CTS(Cu2SnS3)for tracking,monitoring,imaging,measuring,diagnosing and detecting cancer cells,is evaluated.Further,optimization of tris(2,2'-bipyridyl)ruthenium(II)(Ru(bpy)32+)concentrations and Copper Zinc Antimony Sulfide,CZAS(Cu1.18Zn0.40Sb1.90S7.2)semiconductor as two main and effective materials in the intensity of synchrotron for tracking,monitoring,imaging,measuring,diagnosing and detecting cancer cells are considered so that the highest sensitivity obtains.In this regard,various concentrations of two materials were prepared and photon emission was investigated in the absence of cancer cells.On the other hand,ccancer diagnosis requires the analysis of images and attributes as well as collecting many clinical and mammography variables.In diagnosis of cancer,it is important to determine whether a tumor is benign or malignant.The information about cancer risk prediction along with the type of tumor are crucial for patients and effective medical decision making.An ideal diagnostic system could effectively distinguish between benign and malignant cells;however,such a system has not been created yet.In this study,a model is developed to improve the prediction probability of cancer.It is necessary to have such a prediction model as the survival probability of cancer is high when patients are diagnosed at early stages.
基金supported by the National Natural Science Foundation of China(62201243)Fundamental and Applied Research Grant of Guangdong Province(2021A1515110627)+3 种基金Southern University of Science and Technology(Y01796108,Y01796208)RGC Senior Research Fellow Scheme of Hong Kong(SRFS2122-5S04)the Hong Kong Polytechnic University(1-ZVQM),RI-Wear of PolyU(1-CD44)Shenzhen Science and Technology Innovation Committee(SGDX20210823103403033).
文摘With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monitoring,and pre-diagnostics.This paper reviews the recent progress in sweat biosensors and sensing systems integrated into textiles for wearable body status monitoring.The mechanisms of biosensors that are commonly adopted for biomarkers analysis are first introduced.The classification,fabrication methods,and applications of textile conductors in different configurations and dimensions are then summarized.Afterward,innovative strategies to achieve efficient sweat collection with textile-based sensing patches are presented,followed by an in-depth discussion on nanoengineering and system integration approaches for the enhancement of sensing performance.Finally,the challenges of textile-based sweat sensing devices associated with the device reusability,washability,stability,and fabrication reproducibility are discussed from the perspective of their practical applications in wearable healthcare.
基金supported by the National Key R&D Program of China(2021YFA1401103)the National Natural Science Foundation of China(61925502 and 51772145).
文摘Systemic blood circulation is one of life activity’s most important physiological functions.Continuous noninvasive hemodynamicmonitoring is essential for the management of cardiovascular status.However,it is difficult to achieve systemichemodynamic monitoring with the daily use of current devices due to the lack of multichannel and time-synchronized operationcapability over the whole body.Here,we utilize a soft microfiber Bragg grating group to monitor spatiotemporalhemodynamics by taking advantage of the high sensitivity,electromagnetic immunity,and great temporal synchronizationbetween multiple remote sensor nodes.A continuous systemic hemodynamic measurement technique is developedusing all-mechanical physiological signals,such as ballistocardiogram signals and pulse waves,to illustrate the actualmechanical process of blood circulation.Multiple hemodynamic parameters,such as systemic pulse transit time,heartrate,blood pressure,and peripheral resistance,are monitored using skin-like microfiber Bragg grating patches conformallyattached at different body locations.Relying on the soft microfiber Bragg grating group,the spatiotemporal hemodynamicmonitoring technique opens up new possibilities in clinical medical diagnosis and daily health management.
基金Sponsored by the Basic Research Program of China(Grant No.2019YFB1310200)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51521003)the Self⁃Planned Task of State Key Laboratory of Robotics and System,Harbin Institute of Technology(Grant Nos.SKLRS201801B and SKLRS201607B).
文摘Advanced in wireless technologies and flexible materials with great biocompatibility,wearable devices have been utilized in the field of healthcare,sports management,and diseases prevention,which have been widely applied in current electronic equipment.Sweat,as a common metabolite on the skin surface,contains a wealth of biomarkers for disease detection and diagnosis.Therefore,developing wearable sweat sensors can provide a non⁃invasive method for health data collecting,sports monitoring,and clinical diagnosis in a convenient way.Recent research in sweat metabolomics has offered a lot of information for sweat analysis and the wearable sweat sensors with small size,various sensing,and transmission units,and good skin contact has exhibited dynamic multi⁃signal detection.This article introduces the biomarkers in sweat related to different diseases and the current development of sweat sensors for users activation monitoring and diseases detection.The barriers and difficulties in the future are also discussed and perspectives in the next generation sweat sensors are proposed.