Soil is a non-renewable resource,providing a majority of the world’s food and fiber while serving as a vital carbon reservoir.However,the health of soil faces global threats from human activities,particularly widespr...Soil is a non-renewable resource,providing a majority of the world’s food and fiber while serving as a vital carbon reservoir.However,the health of soil faces global threats from human activities,particularly widespread contamination by industrial chemicals.Existing physical,chemical,and biological remediation approaches encounter challenges in preserving soil structure and function throughout the remediation process,as well as addressing the complexities of soil contamination on a regional scale.Viable solutions encompass monitoring and simulating soil processes,with a focus on utilizing big data to bridge micro-scale and macro-scale processes.Additionally,reducing pollutant emissions to soil is paramount due to the significant challenges associated with removing contaminants once they have entered the soil,coupled with the high economic costs of remediation.Further,it is imperative to implement advanced remediation technologies,such as monitored natural attenuation,and embrace holistic soil management approaches that involve regulatory frameworks,soil health indicators,and soil safety monitoring platforms.Safeguarding the enduring health and resilience of soils necessitates a blend of interdisciplinary research,technological innovation,and collaborative initiatives.展开更多
The Qinghai-Tibet Plateau is a climate-sensitive region.The characteristics of drought and flood events in this region are significantly different as compared to other areas in the country,which could potentially indu...The Qinghai-Tibet Plateau is a climate-sensitive region.The characteristics of drought and flood events in this region are significantly different as compared to other areas in the country,which could potentially induce a series of water security,ecological and environmental problems.It is urgent that innovative theories and methods for estimation of drought and flood disasters as well as their adaptive regulations are required.Based on extensive literature review,this paper identifies new situations of the evolution of drought and flood events on the Qinghai-Tibet Plateau,and analyzes the research progress in terms of monitoring and simulation,forecasting and early warning,risk prevention and emergency response.The study found that there were problems such as insufficient integration of multi-source data,low accuracy of forecasting and early warning,unclear driving mechanisms of drought and flood disaster chains,and lack of targeted risk prevention and regulation measures.On this basis,future research priorities are proposed,and the possible research and development paths are elaborated,including the evolution law of drought and flood on the Qinghai-Tibet Plateau,the coincidence characteristics of drought and flood from the perspective of a water resources system,prediction and early warning of drought and flood coupled with numerical simulation and knowledge mining,identification of risk blocking points of drought and flood disaster chain and the adaptive regulations.Hopefully,the paper will provide technical support for preventing flood and drought disasters,water resources protection,ecological restoration and climate change adaptation on the Qinghai-Tibet Plateau.展开更多
基金supported by the National Key Research and Development Program of China(No.2021YFC1809204).
文摘Soil is a non-renewable resource,providing a majority of the world’s food and fiber while serving as a vital carbon reservoir.However,the health of soil faces global threats from human activities,particularly widespread contamination by industrial chemicals.Existing physical,chemical,and biological remediation approaches encounter challenges in preserving soil structure and function throughout the remediation process,as well as addressing the complexities of soil contamination on a regional scale.Viable solutions encompass monitoring and simulating soil processes,with a focus on utilizing big data to bridge micro-scale and macro-scale processes.Additionally,reducing pollutant emissions to soil is paramount due to the significant challenges associated with removing contaminants once they have entered the soil,coupled with the high economic costs of remediation.Further,it is imperative to implement advanced remediation technologies,such as monitored natural attenuation,and embrace holistic soil management approaches that involve regulatory frameworks,soil health indicators,and soil safety monitoring platforms.Safeguarding the enduring health and resilience of soils necessitates a blend of interdisciplinary research,technological innovation,and collaborative initiatives.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3201705)。
文摘The Qinghai-Tibet Plateau is a climate-sensitive region.The characteristics of drought and flood events in this region are significantly different as compared to other areas in the country,which could potentially induce a series of water security,ecological and environmental problems.It is urgent that innovative theories and methods for estimation of drought and flood disasters as well as their adaptive regulations are required.Based on extensive literature review,this paper identifies new situations of the evolution of drought and flood events on the Qinghai-Tibet Plateau,and analyzes the research progress in terms of monitoring and simulation,forecasting and early warning,risk prevention and emergency response.The study found that there were problems such as insufficient integration of multi-source data,low accuracy of forecasting and early warning,unclear driving mechanisms of drought and flood disaster chains,and lack of targeted risk prevention and regulation measures.On this basis,future research priorities are proposed,and the possible research and development paths are elaborated,including the evolution law of drought and flood on the Qinghai-Tibet Plateau,the coincidence characteristics of drought and flood from the perspective of a water resources system,prediction and early warning of drought and flood coupled with numerical simulation and knowledge mining,identification of risk blocking points of drought and flood disaster chain and the adaptive regulations.Hopefully,the paper will provide technical support for preventing flood and drought disasters,water resources protection,ecological restoration and climate change adaptation on the Qinghai-Tibet Plateau.