期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A novel multimode process monitoring method integrating LCGMM with modified LFDA 被引量:4
1
作者 任世锦 宋执环 +1 位作者 杨茂云 任建国 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1970-1980,共11页
Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussi... Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process. 展开更多
关键词 Multimode process monitoring Discriminant local consistency Gaussian mixture model Modified local Fisher discriminant analysis Global fault detection index Tennessee Eastman process
下载PDF
Supervised local and non-local structure preserving projections with application to just-in-time learning for adaptive soft sensor 被引量:4
2
作者 邵伟明 田学民 王平 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1925-1934,共10页
In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring... In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP. 展开更多
关键词 Adaptive soft sensor Just-in-time learning Supervised local and non-local structure preserving projections Locality preserving projections Database monitoring
下载PDF
Thermomechanical analysis of long-term global modal and local deformation measurements of the Kishwaukee Bridge using the bootstrap
3
作者 George M.Lloyd Ming L.Wang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第1期107-115,共9页
In this paper we present a comparative analysis of global frequency and local deformation data for a large concrete bridge. The asymptotic probability distributions of the central statistics are presented, and compare... In this paper we present a comparative analysis of global frequency and local deformation data for a large concrete bridge. The asymptotic probability distributions of the central statistics are presented, and compared with empirical bootstrap estimates. Bootstrapped distributions are calculated from reference data obtained during 1999–2000 and used to develop change-point alarm criteria for the structure, using reasonable sensitivity measures developed from FEM simulations and structural analysis. The implications of the frequency data are discussed in conjunction with the strain and displacement measurements in order to discern if the load carrying capacity of the bridge has been affected. The critical need for more advanced temperature compensation models for large structures continually in thermal disequilibrium is discussed. 展开更多
关键词 thermomechanical effects bootstrap methods local & global monitoring long term measurement concrete bridge
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部