A de-centralised load management technique exploiting the flexibility in the charging of Electric Vehicles (EVs) is presented. Two charging regimes are assumed. The Controlled Charging Regime (CCR) between 16:30 hours...A de-centralised load management technique exploiting the flexibility in the charging of Electric Vehicles (EVs) is presented. Two charging regimes are assumed. The Controlled Charging Regime (CCR) between 16:30 hours and 06:00 hours of the next day and the Uncontrolled Charging Regime (UCR) between 06:00 hours and 16:30 hours of the same day. During the CCR, the charging of EVs is coordinated and controlled by means of a wireless two-way communication link between EV Smart Charge Controllers (EVSCCs) at EV owners’ premises and the EV Load Controller (EVLC) at the local LV distribution substation. The EVLC sorts the EVs batteries in ascending order of their states of charge (SoC) and sends command signals for charging to as many EVs as the transformer could allow at that interval based on the condition of the transformer as analysed by the Distribution Transformer Monitor (DTM). A real and typical urban LV area distribution network in Great Britain (GB) is used as the case study. The technique is applied on</span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">the LV area when its transformer is carrying the future load demand of the area on a typical winter weekday in the year 2050. To achieve the load management, load demand of the LV area network is decomposed into Non-EV <span>load and EV load. The load on the transformer is managed by varying the EV load in an optimisation objective function which maximises the capacity uti</span>lisation of the transformer subject to operational constraints and non-disruption of daily trips of EV owners. Results show that with the proposed load management technique, LV distribution networks could accommodate high uptake of EVs without compromising the useful normal life expectancy of distribution transformers before the need for capacity reinforcement.展开更多
Based on the existed equipment (the power line carrier, optic fiber, twisted pair and wireless apparatus) being used to the same route in the current communication net of distribution management system (DMS), this pap...Based on the existed equipment (the power line carrier, optic fiber, twisted pair and wireless apparatus) being used to the same route in the current communication net of distribution management system (DMS), this paper presents a new kind of communication monitor DMS, which provides a communication monitoring interface and then by DMS, data transfer problem from field terminal unit to junction center station can be solved and the communication channels can also be supervised. At the same time, synthetically using computer communication, internet technology and database technology, this system can realize the real time monitoring and fault locating in the communication network.展开更多
Colorado potato beetle(CPB)is one of the most devastating invasive insects and it is native to North America.It feeds on several wild species of the genus Solamum,such as S.elaeagnifolium and S.rostratum Dunal,and is ...Colorado potato beetle(CPB)is one of the most devastating invasive insects and it is native to North America.It feeds on several wild species of the genus Solamum,such as S.elaeagnifolium and S.rostratum Dunal,and is one of the major pests of potato and eggplant.Beginning in the early 19 th century,CPB has rapidly spread across North America,Europe,and Central Asia.CPB was first reported to invade Xinjiang of China in 1993 and it was effectively controlled in Mori County.Since 2013,CPB has also been found in Jilin and Heilongjiang in Northeast China,and it likely migrated to these provinces from Russia.Thus,China has become the frontier for the global CPB spread,and risk management and monitoring systems for this pest are urgently needed.Here,we summarize pest management methods that are used in areas at the frontier of the CPB invasion,and put forward frameworks for further preventing and controlling of the spread of CPB.The management methods for CPB can also serve as an example for the control of invasive species mitigation in frontier areas.展开更多
Hybrid distribution transformers(HDTs)have better performance than traditional distribution transformers in improving power quality through reducing harmonics,unbalance,voltage fluctuations and low power factors in fu...Hybrid distribution transformers(HDTs)have better performance than traditional distribution transformers in improving power quality through reducing harmonics,unbalance,voltage fluctuations and low power factors in future smart power distribution systems.In order to increase the service life and reliability of hybrid distribution transformers,this paper proposes a remote management system using LoRa technology based on fuzzy logic.HDT based on a fuzzy logic judgment system(FLJS)replaces the Boolean logic with fuzzy logic and several power quality problems including power factors,load-side current harmonics and voltage unbalance are considered,as well as grid-side voltage deviation and unbalance.This management system can dynamically adjust the working states of HDT according to the output results of the FLJS to reduce the use time of power electronic devices.Due to the application of LoRa,this management system can remotely adjust the parameters of the FLJS in real time for different distribution network nodes to avoid frequent switching of HDT working states.In addition,it is able to remotely monitor the real-time working states and fault states of HDT to reduce recovery time and maintenance costs in case of HDT failure.Finally,simulation and experimental results are presented to verify the effectiveness of the proposed management system for HDT.展开更多
Damage detection is an important area with growing interest in mechanical and structural engineering.One of the critical issues in damage detection is how to determine indices sensitive to the structural damage and in...Damage detection is an important area with growing interest in mechanical and structural engineering.One of the critical issues in damage detection is how to determine indices sensitive to the structural damage and insensitive to the surrounding environmental variations.Current damage identification indices commonly focus on structural dynamic characteristics such as natural frequencies,mode shapes,and frequency responses.This study aimed at developing a technique based on energy Curvature Difference,power spectrum density,correlation-based index,load distribution factor,and neutral axis shift to assess the bridge deck condition.In addition to tracking energy and frequency over time using wavelet packet transform,in order to further demonstrate the feasibility and validity of the proposed technique for bridge condition assessment,experimental strain data measured from two stages of a bridge in the different intervals were used.The comparative analysis results of the bridge in first and second stage show changes in the proposed feature values.It is concluded,these changes in the values of the proposed features can be used to assess the bridge deck performance.展开更多
文摘A de-centralised load management technique exploiting the flexibility in the charging of Electric Vehicles (EVs) is presented. Two charging regimes are assumed. The Controlled Charging Regime (CCR) between 16:30 hours and 06:00 hours of the next day and the Uncontrolled Charging Regime (UCR) between 06:00 hours and 16:30 hours of the same day. During the CCR, the charging of EVs is coordinated and controlled by means of a wireless two-way communication link between EV Smart Charge Controllers (EVSCCs) at EV owners’ premises and the EV Load Controller (EVLC) at the local LV distribution substation. The EVLC sorts the EVs batteries in ascending order of their states of charge (SoC) and sends command signals for charging to as many EVs as the transformer could allow at that interval based on the condition of the transformer as analysed by the Distribution Transformer Monitor (DTM). A real and typical urban LV area distribution network in Great Britain (GB) is used as the case study. The technique is applied on</span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">the LV area when its transformer is carrying the future load demand of the area on a typical winter weekday in the year 2050. To achieve the load management, load demand of the LV area network is decomposed into Non-EV <span>load and EV load. The load on the transformer is managed by varying the EV load in an optimisation objective function which maximises the capacity uti</span>lisation of the transformer subject to operational constraints and non-disruption of daily trips of EV owners. Results show that with the proposed load management technique, LV distribution networks could accommodate high uptake of EVs without compromising the useful normal life expectancy of distribution transformers before the need for capacity reinforcement.
文摘Based on the existed equipment (the power line carrier, optic fiber, twisted pair and wireless apparatus) being used to the same route in the current communication net of distribution management system (DMS), this paper presents a new kind of communication monitor DMS, which provides a communication monitoring interface and then by DMS, data transfer problem from field terminal unit to junction center station can be solved and the communication channels can also be supervised. At the same time, synthetically using computer communication, internet technology and database technology, this system can realize the real time monitoring and fault locating in the communication network.
基金supported by the Basic Scientific Funding from Chinese Academy of Inspection and Quarantine (2017JK038 and 2014JK014)
文摘Colorado potato beetle(CPB)is one of the most devastating invasive insects and it is native to North America.It feeds on several wild species of the genus Solamum,such as S.elaeagnifolium and S.rostratum Dunal,and is one of the major pests of potato and eggplant.Beginning in the early 19 th century,CPB has rapidly spread across North America,Europe,and Central Asia.CPB was first reported to invade Xinjiang of China in 1993 and it was effectively controlled in Mori County.Since 2013,CPB has also been found in Jilin and Heilongjiang in Northeast China,and it likely migrated to these provinces from Russia.Thus,China has become the frontier for the global CPB spread,and risk management and monitoring systems for this pest are urgently needed.Here,we summarize pest management methods that are used in areas at the frontier of the CPB invasion,and put forward frameworks for further preventing and controlling of the spread of CPB.The management methods for CPB can also serve as an example for the control of invasive species mitigation in frontier areas.
基金supported by the State Grid Science and Technology Project from State Grid Corporation of China(B626KY190004)the Key Research and Development Project of Shaanxi Province in 2018(No.2018ZDCXL-GY-07-05)。
文摘Hybrid distribution transformers(HDTs)have better performance than traditional distribution transformers in improving power quality through reducing harmonics,unbalance,voltage fluctuations and low power factors in future smart power distribution systems.In order to increase the service life and reliability of hybrid distribution transformers,this paper proposes a remote management system using LoRa technology based on fuzzy logic.HDT based on a fuzzy logic judgment system(FLJS)replaces the Boolean logic with fuzzy logic and several power quality problems including power factors,load-side current harmonics and voltage unbalance are considered,as well as grid-side voltage deviation and unbalance.This management system can dynamically adjust the working states of HDT according to the output results of the FLJS to reduce the use time of power electronic devices.Due to the application of LoRa,this management system can remotely adjust the parameters of the FLJS in real time for different distribution network nodes to avoid frequent switching of HDT working states.In addition,it is able to remotely monitor the real-time working states and fault states of HDT to reduce recovery time and maintenance costs in case of HDT failure.Finally,simulation and experimental results are presented to verify the effectiveness of the proposed management system for HDT.
文摘Damage detection is an important area with growing interest in mechanical and structural engineering.One of the critical issues in damage detection is how to determine indices sensitive to the structural damage and insensitive to the surrounding environmental variations.Current damage identification indices commonly focus on structural dynamic characteristics such as natural frequencies,mode shapes,and frequency responses.This study aimed at developing a technique based on energy Curvature Difference,power spectrum density,correlation-based index,load distribution factor,and neutral axis shift to assess the bridge deck condition.In addition to tracking energy and frequency over time using wavelet packet transform,in order to further demonstrate the feasibility and validity of the proposed technique for bridge condition assessment,experimental strain data measured from two stages of a bridge in the different intervals were used.The comparative analysis results of the bridge in first and second stage show changes in the proposed feature values.It is concluded,these changes in the values of the proposed features can be used to assess the bridge deck performance.