期刊文献+
共找到2,737篇文章
< 1 2 137 >
每页显示 20 50 100
Novel protection systems for the improvement in soil and water stability of expansive soil slopes
1
作者 MA Shao-kun HE Ben-fu +3 位作者 MA Min HUANG Zhen CHEN Sheng-jia YUE Huan 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3066-3083,共18页
To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three group... To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects. 展开更多
关键词 soil and water stability Expansive soil slope Polymer waterproof coating Model test soil erosion
下载PDF
Influence law of modified glutinous rice-based materials on gravel soil reinforcement and water erosion process
2
作者 ZHANG Weng-xiang PEI Xiang-jun +4 位作者 ZHANG Xiao-chao WU Xue-min XIAO Wei-yang QIN Liang ZHU Jin-yu 《Journal of Mountain Science》 SCIE CSCD 2023年第12期3552-3567,共16页
A large number of loose piles formed by mountain hazards are highly susceptible to hydraulic erosion under rainfall conditions.The use of ecological substrate materials for erosion control and ecological restoration o... A large number of loose piles formed by mountain hazards are highly susceptible to hydraulic erosion under rainfall conditions.The use of ecological substrate materials for erosion control and ecological restoration of gravel soil slopes has become a current research hotspot and the study difficulty.The post-earthquake slump accumulation gravel soil in Jiuzhaigou was selected as the research object,and the self-developed modified glutinous rice-based material was used to reinforce the gravel soil.The variable slope flume erosion test and rainfall simulation test were carried out to study the water erosion resistance of the material reconstructed soil under the influence of runoff erosion and raindrop splash erosion.The results show that:As the material content reached 12.5%,the reconstructed soil did not disintegrate after 24 hours of immersion,the internal friction angle was increased by 42.26%,and the cohesion was increased by 235.5%,which played a significant reinforcement effect.In the process of slope erosion,the soil rill erodibility parameter Kr was only 3‰ of the gravel soil control group,the critical shear force τ increased by 272%,and the soil erosion resistance was significantly improved.In the process of rainfall and rainfall on the slope,the runoff intensity of the reconstructed soil was stable,and the ability to resist runoff erosion and raindrop splash erosion was enhanced.The maximum value of soil loss rate on different slope slopes is 0.02-0.10 g·m^(-2)s^(-1),which is significantly lower than that of the control group and has better erosion reduction effect. 展开更多
关键词 Modified glutinous rice substrate Gravel soil soil reconstruction Trauma repair water erosion
下载PDF
Driving forces and their interactions of soil erosion in soil and water conservation regionalization at the county scale with a high cultivation rate
3
作者 LUO Bang-lin LI Jiang-wen +2 位作者 GONG Chun-ming ZHONG Shou-qin WEI Chao-fu 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2502-2518,共17页
Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatia... Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatial heterogeneity and driving factors of soil erosion among different regions is still lacking.It is of great significance for soil erosion control to deeply examine the factors contributing to soil erosion(natural,land use,and socioeconomic factors)and their interaction at the county and regional levels.This study focused on a highly cultivated area,Hechuan District of Chongqing in the Sichuan Basin.The district(with 30 townships)was divided into four soil and water conservation regions(Ⅰ-Ⅳ)using principal component and hierarchical cluster analysis.The driving factors of soil erosion were identified using the geographical detector model.The results showed thatⅰ)the high cultivation rate was a prominent factor of soil erosion,and the sloping farmland accounted for 78.4%of the soil erosion in the study area;ⅱ)land use factors demonstrated the highest explanatory power in soil erosion,and the average interaction of land use factors explained 60.1%of soil erosion in the study area;ⅲ)the interaction between natural factors,socioeconomic factors,and land use factors greatly contributes to regional soil erosion through nonlinear-enhancement of double-factor enhancement.This study highlights the importance of giving special attention to the effects of land use factors on soil erosion at the county scale,particularly in mountainous and hilly areas with extensive sloping farmland and a high cultivation rate. 展开更多
关键词 soil and water Conservation Regionalization Driving factors soil erosion Geographical detector model Spatial heterogeneity
下载PDF
Results and Application of Soil and Water Conservation Monitoring in the Yellow River Basin
4
作者 Yaxi Cai Xiaodong Yang Binhua Zhao 《Journal of Architectural Research and Development》 2023年第3期40-45,共6页
Since water and soil conservation monitoring in the Yellow River Basin entered a new stage at the end of the 20th century,the monitoring scope has been expanding,the monitoring accuracy has been improving,the monitori... Since water and soil conservation monitoring in the Yellow River Basin entered a new stage at the end of the 20th century,the monitoring scope has been expanding,the monitoring accuracy has been improving,the monitoring content and indicators have been increasing,and the monitoring technology and methods have been improving.This paper mainly analyzes the status of soil and water conservation monitoring in the Yellow River Basin,as well as the construction of the monitoring system and related research,in order to provide a reference for watershed management and development and the scientific research of water and soil conservation. 展开更多
关键词 soil and water conservation monitoring results APPLICATION
下载PDF
Soil erosion and its causes in high-filling body:A case study of a valley area on the Loess Plateau,China 被引量:1
5
作者 BAO Han TANG Ming +3 位作者 LAN Heng-xing PENG Jian-bing ZHENG Han GUO Guan-miao 《Journal of Mountain Science》 SCIE CSCD 2023年第1期182-196,共15页
Large-scale land consolidation projects(LCPs)have been carried out on the Loess Plateau to increase the area of agriculture land.The newly created land is prone to soil erosion under the effects of water and gravity.T... Large-scale land consolidation projects(LCPs)have been carried out on the Loess Plateau to increase the area of agriculture land.The newly created land is prone to soil erosion under the effects of water and gravity.Taking a typical high-filling body(HFB)formed by LCPs in Yan’an,China as the subject,this study comprehensively investigated the types and causes of soil erosion with multiple methods of field investigation,on-site monitoring and laboratory tests.Results showed that the HFB presented a composite pattern of soil erosion with multiple types mainly including underground erosion,mixed water-gravity erosion,seepage erosion,and scouring erosion.The type of erosion varied spatially in different parts of the HFB depending on the dominant factors,mainly including the groundwater state,rainfall,runoff,gravity action,topography,and soil erodibility.The underground erosion mainly occurred at the positions with higher groundwater level and larger hydraulic gradient,while scouring erosion mainly occurred at the positions with extensive interactions of surface runoff,channel slope gradient and soil properties.And near the leading edge of the top of the slope,a band of mixed watergravity erosion occurred owing to the effects of water and gravity.In addition,nearly saturated soils at the toe of HFB displayed groundwater exfiltration and slope-face slumping.Based on our findings on the causes and variation of soil erosion for the HFB,we proposed the following erosion prevention and control measures to protect the LCPs on the Loess Plateau:to construct drainage ditches and blind ditches to form a complete drainage system,plant alfalfa on the top platform to increase rainfall interception and reduce surface runoff,set seepage ditches and plant deep-rooted plants at the toe of the slope to improve slope toe stability,monitor groundwater level and slope deformation to learn the erosion dynamics and slope stability,and optimize the geometry of HFB such as the slope gradient and slope steps to reduce soil erosion. 展开更多
关键词 Land consolidation High-filling body soil erosion Loess Plateau On-site monitoring Influence factors
下载PDF
Review on the Impact of Climate Change on Great Lakes Region’s Agriculture and Water Resources
6
作者 Zeyu Shen 《Journal of Geoscience and Environment Protection》 2024年第7期165-176,共12页
This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technol... This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technological advances since the 19th century. From 1900 to 2010, temperatures in the Midwest rose by an average of 1.5 degrees Fahrenheit, which would also lead to an increase in greenhouse gas emissions. Precipitation is also expected to increase due to increased storm activity and changes in regional weather patterns. This paper explores the impact of these changes on urban and agricultural areas. In urban areas such as the city of Chicago, runoff from the increasing impervious surface areas poses challenges to the drainage system, and agriculture areas are challenged by soil erosion, nutrient loss, and fewer planting days due to excessive rainfall. Sustainable solutions such as no-till agriculture and the creation of grassland zones are discussed. Using historical data, recent climate studies and projections, the paper Outlines ways to enhance the Midwest’s ecology and resilience to climate change. 展开更多
关键词 Climate Change Midwest USA Agricultural Impacts Urban Runoff Sustainable Practices Precipitation Patterns Temperature Increase Greenhouse Gas Emissions soil erosion water Management
下载PDF
Review and prospect of soil compound erosion
7
作者 YANG Wenqian ZHANG Gangfeng +2 位作者 YANG Huimin LIN Degen SHI Peijun 《Journal of Arid Land》 SCIE CSCD 2023年第9期1007-1022,共16页
Soil erosion is one of the most serious environmental issues constraining the sustainable development of human society and economies.Soil compound erosion is the result of the alternation or interaction between two or... Soil erosion is one of the most serious environmental issues constraining the sustainable development of human society and economies.Soil compound erosion is the result of the alternation or interaction between two or more erosion forces.In recent years,fluctuations and extreme changes in climatic factors(air temperature,precipitation,wind speed,etc.)have led to an increase in the intensity and extent of compound erosion,which is increasingly considered in soil erosion research.First,depending on the involvement of gravity,compound erosion process can be divided into compound erosion with and without gravity.We systematically summarized the research on the mechanisms and processes of alternating or interacting soil erosion forces(wind,water,and freeze-thaw)considering different combinations,combed the characteristics of compound erosion in three typical regions,namely,high-elevation areas,high-latitude areas,and dry and wet transition regions,and reviewed soil compound erosion research methods,such as station observations,simulation experiments,prediction models,and artificial neural networks.The soil erosion model of wind,water,and freeze-thaw interaction is the most significant method for quantifying and predicting compound erosion.Furthermore,it is proposed that there are several issues such as unclear internal mechanisms,lack of comprehensive prediction models,and insufficient scale conversion methods in soil compound erosion research.It is also suggested that future soil compound erosion mechanism research should prioritize the coupling of compound erosion forces and climate change. 展开更多
关键词 soil compound erosion soil erosion gravity erosion wind and water erosion freeze-thaw erosion
下载PDF
Effects of level soil bunds and stone bunds on soil properties and its implications for crop production: the case of Bokole watershed, Dawuro zone, Southern Ethiopia 被引量:3
8
作者 Kebede Wolka Awdenegest Moges Fantaw Yimer 《Agricultural Sciences》 2011年第3期357-363,共7页
Level soil bunds (LSB) and stone bunds (SB) have been widely implemented in the Bokole watershed since 2000 through support of the World Food Program (WFP). However, the performance of them against the target of the s... Level soil bunds (LSB) and stone bunds (SB) have been widely implemented in the Bokole watershed since 2000 through support of the World Food Program (WFP). However, the performance of them against the target of the structure has not been studied. This study analyzed the effect of LSB and SB on selected soil properties, when compared with nonterraced cropland. The Bokole watershed was divided into two units. From upper watershed, three croplands with LSB (aged 4, 6, and 9 years) and three nonterraced croplands each adjacent to one of the LSB were selected. Similarly, in lower watershed, SB aged 4, 6, and 8 years and three nonterraced croplands each adjacent to one of the SB were selected. From each cropland with LSB and SB, three composite soil samples (rep licates) were collected systematically in X designed rectangular plot. From each nonterraced cropland, three composite soil samples (replicates) were collected in X designed square plot. A total of 36 soil samples were analyzed for Soil Organic Carbon (SOC), Total Nitrogen (TN), Available Phosphorus (AP), Available Potassium (AK), pH, and Cation Exchange Capacity (CEC) following standard laboratory procedures. Most soil parameters were not significantly different in cropland with LSB and SB compared to nonterraced. However, in LSB aged 4 years and SB aged 6 years AP and pH were significantly less than their adjacent-nonterraced cropland. In SB aged 8 years, SOC, AP, AK, and pH were also significantly less than adjacent-nonterraced cropland. Past erosion, and past land uses are likely factors contributed to the observed result. It was inferred that the mean con tribution of LSB and SB alone for crop production with regard to analyzed soil parameters was not significant in the considered sites. Additional soil fertility management practices should be incorporated for better effect. 展开更多
关键词 Crop Yield LEVEL soil Bund Nonterraced soil FERTILITY STONE Bund water erosion waterSHED
下载PDF
Regions and Their Typical Paradigms for Soil and Water Conservation in China 被引量:1
9
作者 DANG Xiaohu SUI Boyang +5 位作者 GAO Siwen LIU Guobin WANG Tao WANG Bing NING Duihu BI Wei 《Chinese Geographical Science》 SCIE CSCD 2020年第4期643-664,共22页
China is experiencing conflicts between its large population and scarce arable land,and between a demand for high productivity and the severe soil erosion of arable land.Since 1949,China has committed to soil and wate... China is experiencing conflicts between its large population and scarce arable land,and between a demand for high productivity and the severe soil erosion of arable land.Since 1949,China has committed to soil and water conservation(SWC),for which eight regions and 41 subregions have been developed to improve the environment and increase land productivity.To obtain information from the regional planning and strategies for SWC and to explore whether SWC practices simultaneously contribute to soil conservation,ecosystem functioning,and the livelihoods of local farmers,and to summarize the successful experiences of various SWC paradigms with distinct characteristics and mechanisms of soil erosion,this paper systematically presents seven SWC regions(excluding the Tibetan Plateau region)and 14 typical SWC paradigms,focusing on erosion mechanisms and the key challenges or issues in the seven regions as well as on the core problems,main objectives,key technologies,and the performance of the 14 typical paradigms.In summary,the 14 typical SWC paradigms successfully prevent and control local soil erosion,and have largely enhanced,or at least do not harm,the livelihoods of local farmers.However,there remain many challenges and issues on SWC and socioeconomic development that need to be addressed in the seven SWC regions.China,thus,still has a long way to go in successfully gaining the win-win objective of SWC and human aspects of development. 展开更多
关键词 regions for soil and water conservation soil erosion dryland farming collapse erosion karst rocky desertification typical paradigm for soil and water conservation
下载PDF
A Simple Device to Evaluate the Influence Parameters of the Water Erosion of Bare Sandy-Clay Soils of the City of Douala 被引量:1
10
作者 Timothée Thierry Odi Enyegue Didier Fokwa +1 位作者 Eric Flavien Mbiakouo-Djomo Ebenezer Njeugna 《Engineering(科研)》 2019年第12期819-827,共9页
We explore the parameters that influence the dynamics of water erosion. The method used is an experimental laboratory simulation, which consists of the quantitative evaluation of eroded masses as a function of slope, ... We explore the parameters that influence the dynamics of water erosion. The method used is an experimental laboratory simulation, which consists of the quantitative evaluation of eroded masses as a function of slope, soil cohesion and rainfall intensity. A simulator was designed to have the ability to vary the slope of the terrain, as well as the rainfall intensity. The variation of the soil cohesion is obtained by compacting the soil under different pressures using a hydraulic press associated with the whole experimental device. The results obtained show that the device is a good tool to simulate in the laboratory the behavior of different soil under the action of rain;because these results are in agreement with existing models USLE, MUSLE and RUSLE [1] [2] [3] [4]. 展开更多
关键词 water erosion Mini-Rain Simulator COHESION of a soil Simulation SLOPE
下载PDF
A GIS-based Modeling Approach for Fast Assessment of Soil Erosion by Water at Regional Scale, Loess Plateau of China 被引量:2
11
作者 HU Llangjun YANG Haijun +1 位作者 YANG Qinke LI Rui 《Chinese Geographical Science》 SCIE CSCD 2010年第5期423-433,共11页
The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of bo... The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of both regional patterns of soil loss and its impact factors in the plateau area. Based on the regional characteristics of pre- cipitation, vegetation and land form, and with the use of Landsat TM and ground investigation data, the entire Loess Plateau was first divided into 3 380 Fundamental Assessment Units (FAUs) to adapt to this regional modeling and fast assessment. A set of easily available parameters reflecting relevant water erosion factors at a regional scale was then developed, in which dynamic and static factors were discriminated. ArcInfo GIS was used to integrate all es- sential data into a central database. A resulting mathematical model was established to link the sediment yields and the selected variables on the basis of FAUs through overlay in GIS and multiple regression analyses. The sensitivity analyses and validation results show that this approach works effectively in assessing large area soil erosion, and also helps to understand the regional associations of erosion and its impact factors, and thus might significantly contribute to planning and policymaking for a large area erosion control in the Loess Plateau. 展开更多
关键词 中国黄土高原 快速评估 土壤侵蚀 区域尺度 建模方法 降水 基础地理信息系统 GIS
下载PDF
SOIL EROSION AND THE WATER & SOIL CONSERVATION IN THE LOESSIAL HILLY AREA OF SOUTHERN NINGXIA
12
作者 Li Shicheng Nigsxia Survey & Design Institute for Agriculture, Yinchuan, China 《干旱区资源与环境》 CSCD 1993年第Z1期93-96,共4页
1. General Situation of Soil Erosion The loessial hilly area of southern Ningxia, Situated at the south of Ningxia Hui Au-tonomous Region, middle-upper reaches of the Yellow River, part of Chinese Loess Pla-teau, cove... 1. General Situation of Soil Erosion The loessial hilly area of southern Ningxia, Situated at the south of Ningxia Hui Au-tonomous Region, middle-upper reaches of the Yellow River, part of Chinese Loess Pla-teau, covers an area of 1500 square kilometers with an annual mean temperature of 5-8℃,a precipitation of 300-500mm of which 70% taking place concentratively during the peri-od between June and September in form of rainstorm, The annual evaporation 展开更多
关键词 Loessial HILLY Area soil erosion water and soil Conservation
下载PDF
Study on the Monitoring Malfunction of Water Pollution during Drought or Flood Period and Low-carbon and High-value Methodology--A Case Study of the Correlation Test of Water,Soil and Gas Pollution in Xiangxiang County
13
作者 LI Jin-song LI Lin-jie 《Meteorological and Environmental Research》 CAS 2011年第8期67-73,共7页
Based on the low-carbon and high-value methodology of chemical ecology and chemical informatics,combining theory and methods,taking saving,environmental protection,low carbon,high production,high value and circulation... Based on the low-carbon and high-value methodology of chemical ecology and chemical informatics,combining theory and methods,taking saving,environmental protection,low carbon,high production,high value and circulation as values and aims,the relationship between human and land as a basis,ecosystem as a center,overall control as a goal and agricultural ecological engineering as a mean,environmental pollution detection,as one of bottlenecks for agricultural products and food security,should be solved firstly;through the field survey in dry years from 2009 to 2010 when drought and flood were frequent and the frequency of drought was higher than that of flood,plus the determination of surface water flow and water quantity in a small typical river basin,the correlation of local water,soil and gas in the county could be found,and the transfer of monitoring focus from water environment to atmospheric environment was possible and necessary.The study would promote the quantitative research on the correlation among water,soil and gas,and the results were in accordance with the conclusions of related studies. 展开更多
关键词 Pollution monitoring REPRESENTATIVE Accuracy Correlation among water soil and gas data Low-carbon and high-value methodology China
下载PDF
Risk Assessment and Change Monitoring of Soil and Water Loss in Ruijin City Based on RS and GIS
14
作者 Zhou Peng Wang Li +3 位作者 Xie Wanting Lu Jiangyue Zhang Xiaoxu Xu Wei 《Meteorological and Environmental Research》 CAS 2018年第4期89-93,共5页
The land use information extraction technology for the high-resolution remote sensing images of the Gaofen No. 1 satellite was construc-ted. According to the spectral, band, texture and shape attributes, land use typ... The land use information extraction technology for the high-resolution remote sensing images of the Gaofen No. 1 satellite was construc-ted. According to the spectral, band, texture and shape attributes, land use types were divided, and the changing laws of land use types were ana- lyzed. Aftewards,according to the Table of Grading Standard of Sooil Erosion Intensity(SL190-96),as well as vegetation coverage index NDVI slope, the risks of soil and water loss were assessed. Meanwhile, the level, scale, location and scope of changes in the risks of soil and water loss were monitored by using spatial visualization and spatial statistical techniques. The results showed that the area of areas without soil erosion and moderate soil erosion areas decreased obviously from 2015 to 2017, and the decreases were up to 22.929 3 and 13.626 3 km2 respectively. The ar-ea of mild soil erosion areas increased fast, and the increase reached 31.140 0 km2. The area of extremely strong soil erosion areas increased by 7.267 4 km2. In the city, moderate and strong soil erosion areas reduced, while extremely strong soil erosion patches increased fast, which was mainly related to road construction and construction and development of orchards. The extremely strong soil erosion areas were distributed in the shape of a banded loop, surrounded the suburbs of the city, and shrank towards the center of Ruijin City. The constructed technology to monitor the changes in land use and soil and water loss, as well as the changing laws of land use and soil and water loss provide the theoretical basis and plan-ning basis of soil and water conservation for urban planning departments and soil and water conservation departments. 展开更多
关键词 Land use Change monitoring soil and water loss soil and water conservation
下载PDF
GIS-Based Multi-Criteria Evaluation to Identify Areas for Soil and Water Conservation in Lower Lake Bogoria Landscapes, Baringo County, Kenya
15
作者 Mark Boitt John Gathoni +1 位作者 Dickson Kaelo Laurine Koech 《Journal of Geoscience and Environment Protection》 2022年第11期64-92,共29页
This study was meant to ensure that there is proper and efficient conservation of soil and water using geospatial tools to enable us identify priority areas to carry out conservation. Over the past years, various fiel... This study was meant to ensure that there is proper and efficient conservation of soil and water using geospatial tools to enable us identify priority areas to carry out conservation. Over the past years, various fields of study have established how critical it is to conserve these natural resources in the ecosystem and to ensure sustainability in not only green livelihoods but also to enhance living conditions of the life on earth. The aim of this research was to generate high priority sites for establishing soil and water conservation techniques in the Lower Bogoria Landscapes in Baringo, Kenya using GIS-based multicriteria decision analysis. Various criteria were analyzed to generate the final conservation priority sites, such as land use land cover, rainfall runoff, soil erosion and slope. The criteria were assigned weights using the AHP technique and overlayed using the weighted overlay tools to produce the final outputs. Land use land cover maps were generated using supervised maximum likelihood technique, rainfall run-off maps were generated using the SCS-CN method and soil erosion maps were generated using RUSLE model. The final soil and water conservation maps showed that high and moderate priority areas requiring the establishment of techniques and mechanisms to control soil erosion and conserve water increased from 1990 to 2020. In 2020, more than 50% of the total study area was classified as moderate to high priority for water and soil conservation. Soil and water conservation structures such as water pans, percolation tanks, farm ponds and stop dams should be constructed in such areas. 展开更多
关键词 Conservation RUN-OFF soil erosion Land Use Land Cover soil and water Conservation
下载PDF
Remote real-time monitoring soil water potential system based on GSM
16
作者 Yongming Zhao Xin Lu Haijiang Wang 《新疆农业科学》 CAS CSCD 2008年第A02期77-80,共4页
Aiming at the limitation of traditional measuring soil water potential, the paper presents an information system based GSM to real-time monitor data coming from multiple data sources. The monitoring system, which cons... Aiming at the limitation of traditional measuring soil water potential, the paper presents an information system based GSM to real-time monitor data coming from multiple data sources. The monitoring system, which consisted of monitoring center, GSM transmission channel and data detection terminal, was given. The detection terminal included the measuring station and TS-2 negative pressure meter, which was applied to measure soil water potential. Nowadays the system has been successfully applied to drip irrigation in the cotton field on farm in Xinjiang region. The system provides a feasible technology frame-work for collecting and processing wide geographical distribution data in farmland. 展开更多
关键词 土壤水势 实时监控系统 测量方法 种植技术
下载PDF
Soil surface roughness change and its effect on runoff and erosion on the Loess Plateau of China 被引量:30
17
作者 LongShan ZHAO XinLan LIANG FaQi WU 《Journal of Arid Land》 SCIE CSCD 2014年第4期400-409,共10页
As an important parameter in the soil erosion model, soil surface roughness(SSR) is used to quantitatively describe the micro-relief on agricultural land. SSR has been extensively studied both experimentally and the... As an important parameter in the soil erosion model, soil surface roughness(SSR) is used to quantitatively describe the micro-relief on agricultural land. SSR has been extensively studied both experimentally and theoretically; however, no studies have focused on understanding SSR on the Loess Plateau of China. This study investigated changes in SSR for three different tillage practices on the Loess Plateau of China and the effects of SSR on runoff and erosion yield during simulated rainfall. The tillage practices used were zero tillage(ZT), shallow hoeing(SH) and contour ploughing(CP). Two rainfall intensities were applied, and three stages of water erosion processes(splash erosion(I), sheet erosion(II) and rill erosion(III)) were analyzed for each rainfall intensity. The chain method was used to measure changes in SSR both initially and after each stage of rainfall. A splash board was used to measure the splash erosion at stage I. Runoff and sediment data were collected continuously at 2-min intervals during rainfall erosion stages II and III. We found that SSR of the tilled surfaces ranged from 1.0% to 21.9% under the three tillage practices, and the order of the initial SSR for the three treatments was ZT〈SH〈CP. For the ZT treatment, SSR increased slightly from stage I to III, whereas for the SH and CP treatments, SSR decreased by 44.5% and 61.5% after the three water erosion stages, respectively, and the greatest reduction in SSR occurred in stage I. Regression analysis showed that the changes in SSR with increasing cumulative rainfall could be described by a power function(R2〉0.49) for the ZT, SH and CP treatments. The runoff initiation time was longer in the SH and CP treatments than in the ZT treatment. There were no significant differences in the total runoff yields among the ZT, SH and CP treatments. Sediment loss was significantly smaller(P〈0.05) in the SH and CP treatments than in the ZT treatment. 展开更多
关键词 tillage practice soil surface roughness overland flow water erosion Loess Plateau
下载PDF
Study of Spatial and Temporal Processes of Soil Erosion on Sloping Land Using Rare Earth Elements As Tracers 被引量:3
18
作者 薛亚洲 刘普灵 +1 位作者 杨明义 琚彤军 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第5期707-713,共7页
Rare earth elements (REE) were used to study the temporal and spatial processes of soil erosion from different depths and sections of a slope. Two simulated rainfall events were applied to a prepared plot with a slope... Rare earth elements (REE) were used to study the temporal and spatial processes of soil erosion from different depths and sections of a slope. Two simulated rainfall events were applied to a prepared plot with a slope of 22°. The total runoff and sediment yield were collected every minute during the rainfall events. During the first twenty minutes of the first rainfall event, the average rate of rill erosion and the accumulated sediment yield due to rill erosion was 0.5 and 0.3 times higher than for sheet erosion. During this time, most of the erosion occurred on the lower one third of the plot. After 20 min, rill erosion became the dominant process on the slope. The average acceleration in the rate of rill erosion, the rate of rill erosion and the accumulated sediment yield due to rill erosion were 42, 6 and 4 times higher than that of sheet erosion, respectively. During the first 35 minutes of the second rainfall event, the average acceleration in the rate of rill erosion was 6~9 times higher than that of sheet erosion. Afterwards, the slope became nearly stable with little change in either rill or sheet erosion rates. Initially, most of the rill erosion occurred in the lower third of the slope but later the preexisting rillhead in the middle section of the slope became reactivated and erosion in this section of the slope increased rapidly. These results indicate that REE tracer technology is a valuable tool for quantifying spatial and temporal changes in erosion from a soil slope. 展开更多
关键词 soil and water loss erosion process REE tracer technology slope land erosion rare earths
下载PDF
Soil erosion calculation in the hydro-fluctuation belt by adding water erosivity factor in the USLE model 被引量:4
19
作者 XIN Zhi-yuan XIA Jian-guo 《Journal of Mountain Science》 SCIE CSCD 2020年第9期2123-2135,共13页
Soils in the hydro-fluctuation belts of the reservoirs are most highly influenced by the special hydro-conditions and reservoir operation,leading to unique soil erosion process and largely accelerate soil erosion inte... Soils in the hydro-fluctuation belts of the reservoirs are most highly influenced by the special hydro-conditions and reservoir operation,leading to unique soil erosion process and largely accelerate soil erosion intensity.The present study aimed to estimate soil erosion rate in the hydro-fluctuation belt of the Pubugou Reservoir,Southwest China,based on the framework of Universal Soil Loss Equation(USLE).An attempt has been made to modify the original USLE by including the reservoir water erosivity(W),a new factor into the model.Soil erosion rate from different land use types were quantitatively estimated,using the USLE and the modified USLE respectively.Field observation showed that soil erosion rate in dry farmland,bare land and grassland was 4700,44600 and 5050 t/km2,respectively.The erosion rate assessed by the modified USLE was closely related to that recorded from the field monitoring data.The findings of this study clearly highlight the importance of inclusion of the W factor to the original USLE model while assessing soil erosion in the reservoir hydro-fluctuation belt. 展开更多
关键词 Modified USLE water erosivity soil erosion Hydro-fluctuation belt Reservoir
下载PDF
An experimental study on the influences of water erosion on wind erosion in arid and semi-arid regions 被引量:2
20
作者 YANG Huimin ZOU Xueyong +1 位作者 WANG Jing'ai SHI Peijun 《Journal of Arid Land》 SCIE CSCD 2019年第2期208-216,共9页
Complex erosion by wind and water causes serious harm in arid and semi-arid regions. The interaction mechanisms between water erosion and wind erosion is the key to further our understanding of the complex erosion. Th... Complex erosion by wind and water causes serious harm in arid and semi-arid regions. The interaction mechanisms between water erosion and wind erosion is the key to further our understanding of the complex erosion. Therefore, in-depth understandings of the influences of water erosion on wind erosion is needed. This research used a wind tunnel and two rainfall simulators to investigate the influences of water erosion on succeeding wind erosion. The wind erosion measurements before and after water erosion were run on semi-fixed aeolian sandy soil configured with three slopes(5°, 10° and 15°), six wind speeds(0, 9, 11, 13, 15 and 20 m/s), and five rainfall intensities(0, 30, 45, 60 and 75 mm/h). Results showed that water erosion generally restrained the succeeding wind erosion. At a same slope, the restraining effects decreased as rainfall intensity increased, which decreased from 70.63% to 50.20% with rainfall intensity increased from 30 to 75 mm/h. Rills shaped by water erosion could weaken the restraining effects at wind speed exceeding 15 m/s mainly by cutting through the fine grain layer, exposing the sand layer prone to wind erosion to airflow. In addition, the restraining effects varied greatly among different soil types. The restraining effects of rainfall on the succeeding wind erosion depend on the formation of a coarsening layer with a crust and a compact fine grain layer after rainfall. The findings can deepen the understanding of the complex erosion and provide scientific basis for regional soil and water conservation in arid and semi-arid regions. 展开更多
关键词 WIND erosion water erosion SandY soil particle size surface ROUGHNESS wind-water erosion agriculturalpastoral ECOTONE
下载PDF
上一页 1 2 137 下一页 到第
使用帮助 返回顶部