期刊文献+
共找到336,046篇文章
< 1 2 250 >
每页显示 20 50 100
Pretreatment and analysis techniques development of TKIs in biological samples for pharmacokinetic studies and therapeutic drug monitoring
1
作者 Lan Chen Yuan Zhang +5 位作者 Yi-Xin Zhang Wei-Lai Wang De-Mei Sun Peng-Yun Li Xue-Song Feng Yue Tan 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第4期439-459,共21页
Tyrosine kinase inhibitors(TKIs)have emerged as the first-line small molecule drugs in many cancer therapies,exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine... Tyrosine kinase inhibitors(TKIs)have emerged as the first-line small molecule drugs in many cancer therapies,exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine kinase-mediated signaling pathways.However,there exists a substantial inter-individual variability in the concentrations of certain TKIs and their metabolites,which may render patients with compromised immune function susceptible to diverse infections despite receiving theoretically efficacious anticancer treatments,alongside other potential side effects or adverse reactions.Therefore,an urgent need exists for an up-to-date review concerning the biological matrices relevant to bioanalysis and the sampling methods,clinical pharmacokinetics,and therapeutic drug monitoring of different TKIs.This paper provides a comprehensive overview of the advancements in pretreatment methods,such as protein precipitation(PPT),liquid-liquid extraction(LLE),solid-phase extraction(SPE),micro-SPE(μ-SPE),magnetic SPE(MSPE),and vortex-assisted dispersive SPE(VA-DSPE)achieved since 2017.It also highlights the latest analysis techniques such as newly developed high performance liquid chromatography(HPLC)and high-resolution mass spectrometry(HRMS)methods,capillary electrophoresis(CE),gas chromatography(GC),supercritical fluid chromatography(SFC)procedures,surface plasmon resonance(SPR)assays as well as novel nanoprobes-based biosensing techniques.In addition,a comparison is made between the advantages and disadvantages of different approaches while presenting critical challenges and prospects in pharmacokinetic studies and therapeutic drug monitoring. 展开更多
关键词 TKIs Microextraction technique HRMS methods Pharmacokinetic studies Therapeutic drug monitoring
下载PDF
Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique
2
作者 Xiaoxue Wang Lulu Jin +8 位作者 Jinke Wang Rongqiao Wang Xiuchun Liu Kai Gao Jingli Sun Yong Yuan Lingwei Ma Hongchang Qian Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期119-126,共8页
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ... The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating. 展开更多
关键词 atmospheric corrosion monitoring technology corrosion inhibitor COATING carbon steel corrosion protection
下载PDF
Managing crawling-type gastric adenocarcinoma with endoscopic techniques and postoperative monitoring
3
作者 Jia-Chen Yang Liu-Xiang Chen Bing Hu 《World Journal of Gastroenterology》 SCIE CAS 2024年第43期4657-4659,共3页
Crawling-type gastric adenocarcinoma is a rare subtype of gastric cancer with diagnostic and therapeutic challenges due to its flat,ill-defined lesions.Advanced diagnostic techniques,such as narrow-band imaging and li... Crawling-type gastric adenocarcinoma is a rare subtype of gastric cancer with diagnostic and therapeutic challenges due to its flat,ill-defined lesions.Advanced diagnostic techniques,such as narrow-band imaging and linear endoscopic ultrasonography,improve detection,but endoscopic submucosal dissection poses a risk of incomplete resection.Despite negative resection margins,vigilant postoperative monitoring is crucial due to the potential for recurrence.This letter highlights the importance of refined diagnostic criteria,individualized treatment approaches,and continuous follow-up to optimize management of this unique gastric cancer subtype. 展开更多
关键词 Crawling-type gastric cancer Superficial flat tumor Positive resection margin Multiple biopsies Endoscopic submucosal dissection Postoperative monitoring
下载PDF
Rock mass structural recognition from drill monitoring technology in underground mining using discontinuity index and machine learning techniques 被引量:1
4
作者 Alberto Fernández JoséA.Sanchidrián +3 位作者 Pablo Segarra Santiago Gómez Enming Li Rafael Navarro 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期555-571,共17页
A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for... A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for calibration.Data from two underground operations with different drilling technology and different rock mass characteristics are considered,which generalizes the application of the methodology to different sites and ensures the full operational integration of MWD data analysis.Two approaches are followed for site-specific structural model building:a discontinuity index(DI)built from variations in MWD parameters,and a machine learning(ML)classifier as function of the drilling parameters and their variability.The prediction ability of the models is quantitatively assessed as the rate of recognition of discontinuities observed in borehole logs.Differences between the parameters involved in the models for each site,and differences in their weights,highlight the site-dependence of the resulting models.The ML approach offers better performance than the classical DI,with recognition rates in the range 89%to 96%.However,the simpler DI still yields fairly accurate results,with recognition rates 70%to 90%.These results validate the adaptive MWD-based methodology as an engineering solution to predict rock structural condition in underground mining operations. 展开更多
关键词 Drill monitoring technology Rock mass characterization Underground mining Similarity metrics of binary vectors Structural rock factor Machine learning
下载PDF
Application and management of continuous glucose monitoring in diabetic kidney disease 被引量:1
5
作者 Xin-Miao Zhang Quan-Quan Shen 《World Journal of Diabetes》 SCIE 2024年第4期591-597,共7页
Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly fou... Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation. 展开更多
关键词 Diabetic kidney disease Continuous glucose monitoring Glycemic monitoring HEMODIALYSIS Peritoneal dialysis Kidney transplantation
下载PDF
Clinical diagnostic advances in intestinal anastomotic techniques:Hand suturing,stapling,and compression devices 被引量:1
6
作者 Ah Young Lee Joo Young Cho 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第5期1231-1234,共4页
The development of intestinal anastomosis techniques,including hand suturing,stapling,and compression anastomoses,has been a significant advancement in surgical practice.These methods aim to prevent leakage and minimi... The development of intestinal anastomosis techniques,including hand suturing,stapling,and compression anastomoses,has been a significant advancement in surgical practice.These methods aim to prevent leakage and minimize tissue fibrosis,which can lead to stricture formation.The healing process involves various phases:hemostasis and inflammation,proliferation,and remodeling.Mechanical staplers and sutures can cause inflammation and fibrosis due to the release of profibrotic chemokines.Compression anastomosis devices,including those made of nickel-titanium alloy,offer a minimally invasive option for various surgical challenges and have shown safety and efficacy.However,despite advancements,anastomotic techniques are evaluated based on leakage risk,with complications being a primary concern.Newer devices like Magnamosis use magnetic rings for compression anastomosis,demonstrating greater strength and patency compared to stapling.Magnetic technology is also being explored for other medical treatments.While there are promising results,particularly in animal models,the realworld application in humans is limited,and further research is needed to assess their safety and practicality. 展开更多
关键词 ANASTOMOSES Diagnostic advances Anastomotic techniques technique Intestine
下载PDF
Push forward LC-MS-based therapeutic drug monitoring and pharmacometabolomics for anti-tuberculosis precision dosing and comprehensive clinical management 被引量:1
7
作者 Nguyen Quang Thu Nguyen Tran Nam Tien +3 位作者 Nguyen Thi Hai Yen Thuc-Huy Duong Nguyen Phuoc Long Huy Truong Nguyen 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第1期16-38,共23页
The spread of tuberculosis(TB),especially multidrug-resistant TB and extensively drug-resistant TB,has strongly motivated the research and development of new anti-TB drugs.New strategies to facilitate drug combination... The spread of tuberculosis(TB),especially multidrug-resistant TB and extensively drug-resistant TB,has strongly motivated the research and development of new anti-TB drugs.New strategies to facilitate drug combinations,including pharmacokinetics-guided dose optimization and toxicology studies of first-and second-line anti-TB drugs have also been introduced and recommended.Liquid chromatography-mass spectrometry(LC-MS)has arguably become the gold standard in the analysis of both endo-and exo-genous compounds.This technique has been applied successfully not only for therapeutic drug monitoring(TDM)but also for pharmacometabolomics analysis.TDM improves the effectiveness of treatment,reduces adverse drug reactions,and the likelihood of drug resistance development in TB patients by determining dosage regimens that produce concentrations within the therapeutic target window.Based on TDM,the dose would be optimized individually to achieve favorable outcomes.Pharmacometabolomics is essential in generating and validating hypotheses regarding the metabolism of anti-TB drugs,aiding in the discovery of potential biomarkers for TB diagnostics,treatment monitoring,and outcome evaluation.This article highlighted the current progresses in TDM of anti-TB drugs based on LC-MS bioassay in the last two decades.Besides,we discussed the advantages and disadvantages of this technique in practical use.The pressing need for non-invasive sampling approaches and stability studies of anti-TB drugs was highlighted.Lastly,we provided perspectives on the prospects of combining LC-MS-based TDM and pharmacometabolomics with other advanced strategies(pharmacometrics,drug and vaccine developments,machine learning/artificial intelligence,among others)to encapsulate in an all-inclusive approach to improve treatment outcomes of TB patients. 展开更多
关键词 TUBERCULOSIS Therapeutic drug monitoring LC-MS MIPD Pharmacometabolomics Precision medicine
下载PDF
Fiber optic monitoring of an anti-slide pile in a retrogressive landslide 被引量:3
8
作者 Lei Zhang Honghu Zhu +1 位作者 Heming Han Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期333-343,共11页
Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods... Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions. 展开更多
关键词 Anti-slide pile Multi-sliding surface Pile-soil interface Brillouin optical time domain reflectometry (BOTDR) Geotechnical monitoring Reservoir landslide
下载PDF
Application of GNSS-PPP on Dynamic Deformation Monitoring of Offshore Platforms 被引量:1
9
作者 YU Li-na XIONG Kuan +3 位作者 GAO Xi-feng LI Zhi FAN Li-long ZHANG Kai 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期352-361,共10页
The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has b... The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms. 展开更多
关键词 GNSS-PPP offshore platform dynamic deformation monitoring improved CEEMDAN de-noising
下载PDF
Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using synthetic minority oversampling technique 被引量:3
10
作者 Wen-Jing Hu Gang Bai +6 位作者 Yan Wang Dong-Mei Hong Jin-Hua Jiang Jia-Xun Li Yin Hua Xin-Yu Wang Ying Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1227-1235,共9页
BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn... BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance. 展开更多
关键词 Elderly patients Abdominal cancer Postoperative delirium Synthetic minority oversampling technique Predictive modeling Surgical outcomes
下载PDF
Exploring battery material failure mechanisms through synchrotron X-ray characterization techniques 被引量:1
11
作者 Lingzhe Fang Xiaozhao Liu Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期128-135,共8页
Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synch... Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism. 展开更多
关键词 Battery failure Synchrotron-based techniques X-ray scattering X-ray absorption spectroscopy
下载PDF
Monitoring seismicity in the southern Sichuan Basin using a machine learning workflow 被引量:1
12
作者 Kang Wang Jie Zhang +2 位作者 Ji Zhang Zhangyu Wang Huiyu Zhu 《Earthquake Research Advances》 CSCD 2024年第1期59-66,共8页
Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the sout... Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the southern Sichuan Basin of China.This workflow includes coherent event detection,phase picking,and earthquake location using three-component data from a seismic network.By combining Phase Net,we develop an ML-based earthquake location model called Phase Loc,to conduct real-time monitoring of the local seismicity.The approach allows us to use synthetic samples covering the entire study area to train Phase Loc,addressing the problems of insufficient data samples,imbalanced data distribution,and unreliable labels when training with observed data.We apply the trained model to observed data recorded in the southern Sichuan Basin,China,between September 2018 and March 2019.The results show that the average differences in latitude,longitude,and depth are 5.7 km,6.1 km,and 2 km,respectively,compared to the reference catalog.Phase Loc combines all available phase information to make fast and reliable predictions,even if only a few phases are detected and picked.The proposed workflow may help real-time seismic monitoring in other regions as well. 展开更多
关键词 Earthquake monitoring Machine learning Local seismicity Gaussian waveform Sparse stations
下载PDF
Natural Disaster Risk Monitoring for Immovable Cultural Relics Based on Digital Twin 被引量:1
13
作者 LI Bolun DONG Youqiang +2 位作者 QIAO Yunfei HOU Miaole WEN Caihuan 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第1期90-104,共15页
Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicato... Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales. 展开更多
关键词 immovable cultural relics natural disaster risk digital twin risk monitoring
下载PDF
Interplay of laser power and pore characteristics in selective laser melting of ZK60 magnesium alloys:A study based on in-situ monitoring and image analysis 被引量:1
14
作者 Weijie Xie Hau-Chung Man Chi-Wai Chan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1346-1366,共21页
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis... This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys. 展开更多
关键词 Selective laser melting(SLM) Magnesium(Mg)alloys Biodegradable implants POROSITY In-situ monitoring
下载PDF
A landslide monitoring method using data from unmanned aerial vehicle and terrestrial laser scanning with insufficient and inaccurate ground control points 被引量:1
15
作者 Jiawen Zhou Nan Jiang +1 位作者 Congjiang Li Haibo Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4125-4140,共16页
Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These... Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources. 展开更多
关键词 Landslide monitoring Data fusion Terrestrial laser scanning(TLS) Unmanned aerial vehicle(UAV) Model reconstruction
下载PDF
A Review: Biosensor Progression in Glucose Monitoring for Patients with Diabetes
16
作者 Megan Sweeney 《Advances in Bioscience and Biotechnology》 CAS 2024年第8期503-510,共8页
Diabetes is a condition that can come to the surface at any point throughout a person’s life. Although Type 1 and Type 2 Diabetes have different triggers that cause them to arise, a person can experience similar comp... Diabetes is a condition that can come to the surface at any point throughout a person’s life. Although Type 1 and Type 2 Diabetes have different triggers that cause them to arise, a person can experience similar complications from either if not monitored and treated accordingly. Through the Diabetes Control and Complications Trial, it was found that a significant way to monitor diabetes is through glucose levels in a person’s body. The research surrounding glucose monitoring dates to the mid-1800s, with the first successful reagent for glucose testing being developed in 1908. Since then, glucose sensing has become one of the most rapidly growing areas of research and development in biosensor technology, creating a competitive market for more advanced, accurate, and convenient glucose monitoring. This article reviews the history of biosensors used for glucose monitoring, and major advancements in biosensor technology to enhance performance and improve quality of life for patients with diabetes. 展开更多
关键词 BIOSENSOR Continuous Glucose Monitor SMBG Advances in Glucose monitoring DIABETES
下载PDF
IoT-Enabled Plant Monitoring System with Power Optimization and Secure Authentication
17
作者 Samsul Huda Yasuyuki Nogami +5 位作者 Maya Rahayu Takuma Akada MdBiplob Hossain Muhammad Bisri Musthafa Yang Jie Le Hoang Anh 《Computers, Materials & Continua》 SCIE EI 2024年第11期3165-3187,共23页
Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agric... Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agricultural monitoring,they often face limitations such as high power consumption,restricted mobility,complex deployment requirements,and inadequate security measures for data access.This paper introduces an enhanced IoT application for agricultural monitoring systems that address these critical shortcomings.Our system strategically combines power efficiency,portability,and secure access capabilities,assisting farmers in monitoring and tracking crop environmental conditions.The proposed system includes a remote camera that captures images of surrounding plants and a sensor module that regularly monitors various environmental factors,including temperature,humidity,and soil moisture.We implement power management strategies to minimize energy consumption compared to existing solutions.Unlike conventional systems,our implementation utilizes the Amazon Web Services(AWS)cloud platform for reliable data storage and processing while incorporating comprehensive security measures,including Two-Factor Authentication(2FA)and JSON Web Tokens(JWT),features often overlooked in current agricultural IoT solutions.Users can access this secure monitoring system via a developed Android application,providing convenient mobile access to the gathered plant data.We validate our system’s advantages by implementing it with two potted garlic plants on Okayama University’s rooftop.Our evaluation demonstrates high sensor reliabil-ity,with strong correlations between sensor readings and reference data,achieving determination coefficients(R2)of 0.979 for temperature and 0.750 for humidity measurements.The implemented power management strategies extend battery life to 10 days on a single charge,significantly outperforming existing systems that typically require daily recharging.Furthermore,our dual-layer security implementation utilizing 2FA and JWT successfully protects sensitive agricultural data from unauthorized access. 展开更多
关键词 Plant monitoring AGRICULTURE food security environmental monitoring IOT power management AWS secure access JWT
下载PDF
Design and Construction of Automatic Monitoring System for Open-pit Coal Mine Slopes
18
作者 Yu LUO 《Asian Agricultural Research》 2024年第6期19-21,24,共4页
[Objectives]To monitor the stability of open-pit coal mine slopes in real time and ensure the safety of coal mine production.[Methods]The automatic monitoring system of coal mine slope was explored in depth,and the co... [Objectives]To monitor the stability of open-pit coal mine slopes in real time and ensure the safety of coal mine production.[Methods]The automatic monitoring system of coal mine slope was explored in depth,and the core functions of the system were designed comprehensively.According to the design function of the automatic monitoring system,the slope automatic monitoring system was constructed.Besides,in accordance with the actual situation of the slope,the monitoring frequency of slopes was set scientifically,and the key indicators such as rainfall,deep displacement and surface displacement of the slopes were monitored in an all-round and multi-angle way.[Results]During the monitoring period,the overall condition of the slope remained good,and no landslides or other geological disasters occurred.At the same time,the overall rainfall in the slope area remained low.In terms of monitoring data,the horizontal displacement and settlement of the slopes increased first and then tended to be stable.Specifically,the maximum horizontal displacement during the monitoring period was 22.74 mm,while the maximum settlement was 18.65 mm.[Conclusions]The automatic slope monitoring system has obtained remarkable achievements in practical application.It not only improves the accuracy and efficiency of slope stability monitoring,but also provides valuable reference experience for similar projects. 展开更多
关键词 SLOPE monitoring Automatic monitoring technology Global Navigation Satellite SYSTEM (GNSS) monitoring SYSTEM EARLY WARNING
下载PDF
The Application of Analytical Techniques to Alpha-Synuclein in Parkinson’s Disease
19
作者 Olatayo Adedayo Olahanmi 《American Journal of Analytical Chemistry》 CAS 2024年第9期269-285,共17页
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor symptoms such as tremors, rigidity, and bradykinesia, as well as non-motor symptoms including cognitive impairment and mood ... Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor symptoms such as tremors, rigidity, and bradykinesia, as well as non-motor symptoms including cognitive impairment and mood disorders. A hallmark of PD is the accumulation of alpha-synuclein, a presynaptic neuronal protein that aggregates to form Lewy bodies, leading to neuronal dysfunction and cell death. The study of alpha-synuclein and its pathological forms is crucial for understanding the etiology of PD and developing effective diagnostic and therapeutic strategies. Analytical techniques play a pivotal role in elucidating the structure, function, and aggregation mechanisms of alpha-synuclein. Biochemical methods such as Western blotting and enzyme-linked immunosorbent assay (ELISA) are employed to detect and quantify alpha-synuclein in biological samples, offering insights into its expression levels and post-translational modifications. Imaging techniques like immunohistochemistry and positron emission tomography (PET) allow for the visualization of alpha-synuclein aggregates in tissue samples and in vivo, respectively, facilitating the study of its spatial distribution and progression in PD Spectroscopic methods, including nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry, provide detailed structural information on alpha-synuclein and its isoforms, aiding in the identification of conformational changes associated with aggregation. Emerging techniques such as cryo-electron microscopy (Cryo-EM) and single-molecule fluorescence enable high-resolution structural analysis and real-time monitoring of alpha-synuclein aggregation dynamics, respectively. The application of these analytical techniques has significantly advanced our understanding of the pathophysiological role of alpha-synuclein in PD. They have contributed to the identification of potential biomarkers for early diagnosis and the evaluation of therapeutic interventions targeting alpha-synuclein aggregation. Despite technical limitations and challenges in clinical translation, ongoing advancements in analytical methodologies hold promise for improving the diagnosis, monitoring, and treatment of Parkinson’s disease through a deeper understanding of alpha-synuclein pathology. 展开更多
关键词 Parkinson’s Disease ALPHA-SYNUCLEIN techniqueS
下载PDF
Accuracy of FreeStyle Libre flash glucose monitoring in patients with type 2 diabetes who migrated from highlands to plains
20
作者 Zeng-Mei Sun Yuan-Ze Du +11 位作者 Su-Yuan Wang Shu-Yao Sun Yan Ye Xue-Ping Sun Ming-Xia Li Hua He Wun-Chun Long Cheng-Hui Zhang Xuan-Yu Yao Wu-Yi Fan Ling Wang Yun-Hong Wu 《World Journal of Diabetes》 SCIE 2024年第6期1254-1262,共9页
BACKGROUND The FreeStyle Libre flash glucose monitoring(FGM)system entered the Chinese market in 2017 to complement the self-monitoring of blood glucose.Due to its increased usage in clinics,the number of studies inve... BACKGROUND The FreeStyle Libre flash glucose monitoring(FGM)system entered the Chinese market in 2017 to complement the self-monitoring of blood glucose.Due to its increased usage in clinics,the number of studies investigating its accuracy has increased.However,its accuracy has not been investigated in highland populations in China.AIM To evaluate measurements recorded using the FreeStyle Libre FGM system compared with capillary blood glucose measured using the enzyme electrode method in patients with type 2 diabetes(T2D)who had migrated within 3 mo from highlands to plains.METHODS Overall,68 patients with T2D,selected from those who had recently migrated from highlands to plains(within 3 mo),were hospitalized at the Department of Endocrinology from August to October 2017 and underwent continuous glucose monitoring(CGM)with the FreeStyle Libre FGM system for 14 d.Throughout the study period,fingertip capillary blood glucose was measured daily using the enzyme electrode method(Super GL,China),and blood glucose levels were read from the scanning probe during fasting and 2 h after all three meals.Moreover,the time interval between reading the data from the scanning probe and collecting fingertip capillary blood was controlled to<5 min.The accuracy of the FGM system was evaluated according to the CGM guidelines.Subsequently,the factors influencing the mean absolute relative difference(MARD)of this system were analyzed by a multiple linear regression method.RESULTS Pearson’s correlation analysis showed that the fingertip and scanned glucose levels were positively correlated(R=0.86,P=0.00).The aggregated MARD of scanned glucose was 14.28±13.40%.Parker's error analysis showed that 99.30%of the data pairs were located in areas A and B.According to the probe wear time of the FreeStyle Libre FGM system,MARD_(1 d) and MARD_(2-14 d) were 16.55%and 14.35%,respectively(t=1.23,P=0.22).Multiple stepwise regression analysis showed that MARD did not correlate with blood glucose when the largest amplitude of glycemic excursion(LAGE)was<5.80 mmol/L but negatively correlated with blood glucose when the LAGE was≥5.80 mmol/L.CONCLUSION The FreeStyle Libre FGM system has good accuracy in patients with T2D who had recently migrated from highlands to plains.This system might be ideal for avoiding the effects of high hematocrit on blood glucose monitoring in populations that recently migrated to plains.MARD is mainly influenced by glucose levels and fluctuations,and the accuracy of the system is higher when the blood glucose fluctuation is small.In case of higher blood glucose level fluctuations,deviation in the scanned glucose levels is the highest at extremely low blood glucose levels. 展开更多
关键词 Type 2 diabetes Flash glucose monitoring ACCURACY Continuous glucose monitor High altitude
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部