The signal transceiver of the software radio fuze depends on the front-end radio frequency( RF) antenna. RF micro-electro-mechanical-system( MEMS) smart antennas have the capability of flexible beam rapid scanning...The signal transceiver of the software radio fuze depends on the front-end radio frequency( RF) antenna. RF micro-electro-mechanical-system( MEMS) smart antennas have the capability of flexible beam rapid scanning,multi-beam forming and so on,which can improve the ability of detecting,sensing and tracking multiple targets of the fuze. The small RF MEMS smart antenna consists of a 2 × 2 aperture coupled antenna array and six 1-bit MEMS phase shifters. Simulated results demonstrate that the antenna can complete beam steering angles of ± 30° in both X and Y plane at 17. 3 GHz. All components can be fabricated and monolithically integrated with MEMS technology which causes the system low cost and small volume. The RF MEMS smart antenna presents a good and important prospect for the development of the software radio fuze antenna.展开更多
文摘The signal transceiver of the software radio fuze depends on the front-end radio frequency( RF) antenna. RF micro-electro-mechanical-system( MEMS) smart antennas have the capability of flexible beam rapid scanning,multi-beam forming and so on,which can improve the ability of detecting,sensing and tracking multiple targets of the fuze. The small RF MEMS smart antenna consists of a 2 × 2 aperture coupled antenna array and six 1-bit MEMS phase shifters. Simulated results demonstrate that the antenna can complete beam steering angles of ± 30° in both X and Y plane at 17. 3 GHz. All components can be fabricated and monolithically integrated with MEMS technology which causes the system low cost and small volume. The RF MEMS smart antenna presents a good and important prospect for the development of the software radio fuze antenna.