For monomer reactivity ratios study, the copolymerization of D,L-3-methylglycolide (MG) with glycolide (GA) or D,L-lactide (LA) was carried out in bulk to a certain low conversion in the presence of stannous octoate a...For monomer reactivity ratios study, the copolymerization of D,L-3-methylglycolide (MG) with glycolide (GA) or D,L-lactide (LA) was carried out in bulk to a certain low conversion in the presence of stannous octoate at 140 degrees C. The copolymer compositions were determined by H-1 NMR spectroscopy. The monomer reactivity ratios were evaluated by Fineman-Ross method, Kelen-Tudos method and linear least-squares method. The monomer reactivity ratios of D,L-3-methylglycolide and glycolide or D,L-lactide are r(mg)= 0.73, r(ga)= 1.47; r(mg)= 1.71, r(la)= 0.92, respectively.展开更多
The monomer reactivity ratios of free radical copolymerization of styrene and methyl methacrylate in carbon dioxide at vapor-liquid equilibrium state (vlCO(2)) at 65 degrees C and under 7.5-8.5 MPa were measured. The ...The monomer reactivity ratios of free radical copolymerization of styrene and methyl methacrylate in carbon dioxide at vapor-liquid equilibrium state (vlCO(2)) at 65 degrees C and under 7.5-8.5 MPa were measured. The experimental results showed that, in comparison with the data in bulk copolymerization, the monomer reactivity ratio of St in vlCO(2) increased acompanied by a somewhat decrease in that of MMA. Further analysis of the sequence distributions of these copolymers by H-1-NMR spectra indicated that there was a significant bootstrap effect in this system. The local monomer concentrations in the proximity of growing free radicals, rather than the true reactivity of monomers or free radicals, were altered by the presence of vlCO(2), leading to the change in monomer reactivity ratios.展开更多
2-Acrylamido-2-methyl-1-propanesulfonic acid (AMPS), and maleic acid (MA) copolymerized with different feed ratios using N,N-dimethylformamide as a solvent and benzoyl peroxide (Bz2O2) as an initiator at 70℃. S...2-Acrylamido-2-methyl-1-propanesulfonic acid (AMPS), and maleic acid (MA) copolymerized with different feed ratios using N,N-dimethylformamide as a solvent and benzoyl peroxide (Bz2O2) as an initiator at 70℃. Structure and composition of copolymers for a wide range of monomer feed were determined by elemental analysis (content of N for AMPS-units). Monomer reactivity ratios for AMPS (M1)-MA (M2) pair were determined by the application of conventional linearization methods such as Fineman-Ross (F-R), Kelen-Tudos(KT) and Extended Kelen-Tudos (EKT) and a nonlinear error invariable model method using a computer program RREVM. The characterizations were done by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) thermal gravimetry analysis (TGA), and and X-ray diffraction. The antimicrobial effects of polymers were also tested on various bacteria, and yeast.展开更多
基金This work was supported by the Key Project of the National Natural Science Foundation of China!(59833 140).
文摘For monomer reactivity ratios study, the copolymerization of D,L-3-methylglycolide (MG) with glycolide (GA) or D,L-lactide (LA) was carried out in bulk to a certain low conversion in the presence of stannous octoate at 140 degrees C. The copolymer compositions were determined by H-1 NMR spectroscopy. The monomer reactivity ratios were evaluated by Fineman-Ross method, Kelen-Tudos method and linear least-squares method. The monomer reactivity ratios of D,L-3-methylglycolide and glycolide or D,L-lactide are r(mg)= 0.73, r(ga)= 1.47; r(mg)= 1.71, r(la)= 0.92, respectively.
基金supported by the National Natural Science Foundation of China(No.20674017).
文摘The monomer reactivity ratios of free radical copolymerization of styrene and methyl methacrylate in carbon dioxide at vapor-liquid equilibrium state (vlCO(2)) at 65 degrees C and under 7.5-8.5 MPa were measured. The experimental results showed that, in comparison with the data in bulk copolymerization, the monomer reactivity ratio of St in vlCO(2) increased acompanied by a somewhat decrease in that of MMA. Further analysis of the sequence distributions of these copolymers by H-1-NMR spectra indicated that there was a significant bootstrap effect in this system. The local monomer concentrations in the proximity of growing free radicals, rather than the true reactivity of monomers or free radicals, were altered by the presence of vlCO(2), leading to the change in monomer reactivity ratios.
文摘2-Acrylamido-2-methyl-1-propanesulfonic acid (AMPS), and maleic acid (MA) copolymerized with different feed ratios using N,N-dimethylformamide as a solvent and benzoyl peroxide (Bz2O2) as an initiator at 70℃. Structure and composition of copolymers for a wide range of monomer feed were determined by elemental analysis (content of N for AMPS-units). Monomer reactivity ratios for AMPS (M1)-MA (M2) pair were determined by the application of conventional linearization methods such as Fineman-Ross (F-R), Kelen-Tudos(KT) and Extended Kelen-Tudos (EKT) and a nonlinear error invariable model method using a computer program RREVM. The characterizations were done by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) thermal gravimetry analysis (TGA), and and X-ray diffraction. The antimicrobial effects of polymers were also tested on various bacteria, and yeast.