Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding th...Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.展开更多
Magnetic monopoles stand for the static solution arising from a(1 + 3)–dimensional theory describing the interaction between a real scalar triplet and non–Abelian gauge field. In this paper, we obtain a two–point b...Magnetic monopoles stand for the static solution arising from a(1 + 3)–dimensional theory describing the interaction between a real scalar triplet and non–Abelian gauge field. In this paper, we obtain a two–point boundary value problem of a first–order ordinary differential equations from the self–dual monopole model. Then we establish the existence and uniqueness theorem for the problem by using a dynamical shooting method, we also obtain sharp asymptotic estimates for the solutions at infinity.展开更多
In this work, the possible structures of electron and proton have been explored. Based on the potential expressions of electron and proton, we found that the electron and proton share the similar structure inside re a...In this work, the possible structures of electron and proton have been explored. Based on the potential expressions of electron and proton, we found that the electron and proton share the similar structure inside re and rn. And within re and rn, the conventional charge concept stops working, the same charge repelling force doesn’t exist anymore and as a result, the requirement of charge conservation is automatically removed. Whereas beyond re and rn, the potential expressions of electron and proton obey the point charge potentials as we normally understand. Therefore, the conventional charge concept can be applied and the requirement of charge conservation takes effect. Furthermore, a possible mechanism for the creations of electric monopole and magnetic monopole is discussed. In addition, to compare the particle size in micro-world, the balloon criterion is proposed. By this balloon criterion, the proton is determined about 10 times bigger than electron. From the physical picture about electron and proton described above, the stabilities of electron and proton can be explained quite well.展开更多
In this paper, the submicroscopic deterministic concept developed by the author is applied to the problem of the neutrino mass. A particle appears from space considered as a mathematical lattice of primary topological...In this paper, the submicroscopic deterministic concept developed by the author is applied to the problem of the neutrino mass. A particle appears from space considered as a mathematical lattice of primary topological balls, and induces a deformation coat in its surrounding. The principles of the interaction of particles with space and through space between themselves are considered in detail. The approach states that real quarks possess only an integer charge (±e) and when moving they periodically change to the monopole state (⇄g) and hence, canonical particles are dynamic dyons. A neutrino emerges as a squeezed quark when it is in a monopole state, or in other words, the quark monopole state (a bubble in the tessellattice) is transferred to the appropriate lepton monopole state (a speck in the tessellattice). The self-mass (a “rest” mass) for each neutrino flavour is calculated. The calculated value of the self-mass for the electron anti-neutrino is 1.22873978 × 10<sup>-36</sup> kg = 0.68927247 eV/c<sup>2</sup>. The concept of neutrino oscillations is revised, and another postulation is proposed, namely, that the transition from lighter to heavier flavors is due to the inelastic scattering of neutrinos on oncoming scatterers. As a result, the neutrino captures the mass defect, becomes heavier, and therefore the transitions V<sub>e</sub>⟶V<sub>μ</sub> and V<sub>μ</sub>⟶V<sub>τ</sub> occur;thus, the number of light neutrinos decreases in the neutrino flux studied.展开更多
The Aharonov-Bohm effect (experimentally verified) constitutes an undubitable proof of the non local nature of quantum mechanics and of the gauge character of the electromagnetic interaction. On the other hand, the ex...The Aharonov-Bohm effect (experimentally verified) constitutes an undubitable proof of the non local nature of quantum mechanics and of the gauge character of the electromagnetic interaction. On the other hand, the existence of a Dirac monopole (not yet experimentally confirmed) leads to the quantization of the electric charge. Both phenomena can be mathematically described in the context of fiber bundle theory. Using this approach, we briefly review the mutual determination of the corresponding connections ωA−B, ωDand potentials AA−B±, AD±. This mathematical result gives an additional theoretical support to present day active search of the magnetic charge.展开更多
Two magnetic monopole models (i.e., model (I, II)) are presented to discuss the energy resources problem based on magnetic monopole catalytic nuclear decay in massive white dwarfs. We find that the luminosities for mo...Two magnetic monopole models (i.e., model (I, II)) are presented to discuss the energy resources problem based on magnetic monopole catalytic nuclear decay in massive white dwarfs. We find that the luminosities for most of massive white dwarfs increase as the temperature increases. The luminosities of model (II) are agreed well with those of the observations at relativistic high temperature (e.g., T6=1,10), However, the luminosities of the observations can be five orders of magnitude larger than those of model (I).展开更多
The manuscript introduces an “ab initio” quantum model to deduce the Maxwell equations. After general considerations and laying out the model’s theoretical framework, these equations can be derived alongside a broa...The manuscript introduces an “ab initio” quantum model to deduce the Maxwell equations. After general considerations and laying out the model’s theoretical framework, these equations can be derived alongside a broad variety of other results. Specifically, a corollary of the present model proposes a possible mechanism underlying the formation of magnetic monopoles and allows estimating their formation energy in order of magnitude.展开更多
A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed for wireless universal serial-bus (WUSB). The antenna is composed of a U-shaped line radi...A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed for wireless universal serial-bus (WUSB). The antenna is composed of a U-shaped line radiator and a small strip bar and is partially grounded, so that the measured impedance bandwidth of the antenna is about 7. 88 GHz covering 3. 12 to 11 GHz with VSWR below 2, and the expected band rejection of 5.06 to 5. 89 GHz is also obtained. The characteristics of the proposed antenna are analyzed, and the geometric parameters for optimal performance are investigated in detail. A relatively stable, quasi-omnidirectional and quasi-symmetrical radiation pattern is also found. The proposed band-notched UWB antenna requires no external filters to avoid interference with other systems, and thus, greatly simplifies the system design of an ultra wideband WUSB communication system.展开更多
Due to rapid growth in wireless communication technology,higher bandwidth requirement for advance telecommunication systems,capable of operating on two or higher bands with higher channel capacities and minimum distor...Due to rapid growth in wireless communication technology,higher bandwidth requirement for advance telecommunication systems,capable of operating on two or higher bands with higher channel capacities and minimum distortion losses is desired.In this paper,a compact Ultra-Wideband(UWB)V-shaped monopole antenna is presented.UWB response is achieved by modifying the ground plane with Chichen Itzia inspired rectangular staircase shape.The proposed V-shaped is designed by incorporating a rectangle,and an inverted isosceles triangle using FR4 substrate.The size of the antenna is 25 mm×26 mm×1.6 mm.The proposed V-shaped monopole antenna produces bandwidth response of 3 GHz Industrial,Scientific,and Medical(ISM),Worldwide Interoperability for Microwave Access(WiMAX),(IEEE 802.11/HIPERLAN band,5G sub 6 GHz)which with an additional square cut amplified the bandwidth response up to 8 GHz ranging from 3.1 GHz to 10.6 GHz attaining UWB defined by Federal Communications Commission(FCC)with a maximum gain of 3.83 dB.The antenna is designed in Ansys HFSS.Results for key performance parameters of the antenna are presented.The measured results are in good agreement with the simulated results.Due to flat gain,uniform group delay,omni directional radiation pattern characteristics and well-matched impedance,the proposed antenna is suitable for WiMAX,ISM and heterogeneous wireless systems.展开更多
A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two ...A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two bandnotched characteristics in WiMAX3.5 GHz and WLAN 5.5 GHz.The size of antenna is 24 mm × 36 mm × 1.6 mm.The simulation results show that waveband range of the antenna is 2.7-10.6 GHz for S11 <-10 dB and the band-notched wavebands are 3.2-3.8 GHz and 5.1-6 GHz.So it has miniaturization,ultra-band and band-notched characteristics.Meanwhile,the radition pattern,directivety and gain are perfect,which meets the practical need.展开更多
In this paper,a low cost,highly efficient and low profile monopole antenna for ultra-wideband(UWB)applications is presented.A new inverted triangular-shape structure possessing meander lines is designed to achieve a w...In this paper,a low cost,highly efficient and low profile monopole antenna for ultra-wideband(UWB)applications is presented.A new inverted triangular-shape structure possessing meander lines is designed to achieve a wideband response and high efficiency.To design the proposed structure,three steps are utilized to achieve an UWB response.The bandwidth of the proposed antenna is improved with changing meander lines parameters,miniaturization of the ground width and optimization of the feeding line.The measured and simulated frequency band ranges from 3.2 to 12 GHz,while the radiation patterns are measured at 4,5.3,6 and 8 GHz frequency bands.The overall volume of the proposed antenna is 26×25×1.6 mm^(3);whereas the FR4 material is used as a substrate with a relative permittivity and loss tangent of 4.3 and 0.025,correspondingly.The peak gain of 4 dB is achieved with a radiation efficiency of 80 to 98%for the entire wideband.Design modelling of proposed antenna is performed in ANSYS HFSS 13 software.A decent consistency between the simulated and measured results is accomplished which shows that the proposed antenna is a potential candidate for the UWB applications.展开更多
This paper derives the Hawking flux from the Schwarzschild black hole with a global monopole by using Robinson and Wilczek's method. Adopting a dimensional reduction technique, it can describe the effective quantum f...This paper derives the Hawking flux from the Schwarzschild black hole with a global monopole by using Robinson and Wilczek's method. Adopting a dimensional reduction technique, it can describe the effective quantum field in the (3 + 1)-dimensional global monopole background by an infinite collection of the (1 + 1)-dimensional massless fields if neglecting the ingoing modes near the horizon, where the gravitational anomaly can be cancelled by the (1 + 1)- dimensional black body radiation at the Hawking temperature.展开更多
A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed o...A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed of arbitrarily shaped cylinders embedded in a host medium. In order to find the eigenvalues of the problem, besides the sources used to expand the wave field, an extra monopole source is introduced which acts as the external excitation. By varying the frequency of the excitation, the eigenvalues can be localized as the extreme points of an appropriately chosen function. By sweeping the frequency range of interest and sweeping the boundary of the irreducible first Brillouin zone, the band structure is obtained. Some numerical examples are presented to validate the proposed method.展开更多
This paper presents an AMC(artificial magnetic conductor)-based wideband circularly polarized printed monopole antenna for unidirectional radiation.The antenna includes an AMC reflector,a coplanar waveguide(CPW)feed s...This paper presents an AMC(artificial magnetic conductor)-based wideband circularly polarized printed monopole antenna for unidirectional radiation.The antenna includes an AMC reflector,a coplanar waveguide(CPW)feed structure to excite the antenna,a ground plane with a rectangular slot on the left side of feedline,and an asymmetrical ground plane on its right side.The induced surface currents on CWP feedline,rectangularly slotted,and asymmetrical ground planes cause circularly polarized radiations.The AMC reflector consisting periodic metallic square patches is used instead of the conventional PEC(perfect electric conductor)reflector,the distance between the antenna and reflector is reduced from 0.25λ0 to 0.18λ0 with performance improvement.By incorporating AMC layer with the monopole antenna,the gain of antenna is increased from 3.3 dBic to 8.7 dBic while the axial ratio bandwidth(ARBW)of antenna is increased from 27.27%to 51.67%.The simulated and measured results show that the proposed antenna has an overlapping 10-dB|S_(11)|and 3-dB ARBW of 51.67%(3.0–5.09 GHz).The overall dimensions of monopole antenna backed by AMC reflector is 1.20_(λ0)×1.20_(λ0)×0.21_(λ0) and covers 5G sub-6 GHz new radio bands(n77/n78/n79)for wireless communication systems.展开更多
Monopoles and vortices are well known magnetically charged soliton solutions of gauge field equations. Extending the idea of Dirac on monopoles, Schwinger pioneered the concept of solitons carrying both electric and m...Monopoles and vortices are well known magnetically charged soliton solutions of gauge field equations. Extending the idea of Dirac on monopoles, Schwinger pioneered the concept of solitons carrying both electric and magnetic charges, called dyons, which are useful in modeling elementary particles. Mathematically, the existence of dyons presents interesting variational partial differential equation problems, subject to topological constraints. This article is a survey on recent progress in the study of dyons.展开更多
Based on the symmetry of the structure, a two-dimensional finite difference time domain (FDTD) method is used to analyze the sleeve monopole antenna on the infinite perfect conductor ground fed by a coaxial line. Th...Based on the symmetry of the structure, a two-dimensional finite difference time domain (FDTD) method is used to analyze the sleeve monopole antenna on the infinite perfect conductor ground fed by a coaxial line. The fields in time domain are then turned into frequency domain through the discrete Fourier Transform to compute the surface current distribution and the input impedance of the sleeve monopole antenna. The gain or pattern of the monopole antenna is also computed, employing the combination of the image theory and the near-to-far transformation in frequency domain. All the computed results agree very well with the results of other methods and measured ones, verifying the application of the FDTD method to analyze the sleeve monopole antennas. The voltage standing wave ratio (VSWR) of the sleeve monopole antennas with different heights and radii of the sleeve are checked to study the influence of the sleeve, which indicates that the height and the radius of the sleeve are both important to the impedance bandwidth of the sleeve monopole antennas.展开更多
A new type of ultra-wideband (UWB) printed monopole antennas is presented, which is composed of a circular or armular patch and a trapeziform ground plane with a tapered CPW feeder in the middle. Both simulated and ...A new type of ultra-wideband (UWB) printed monopole antennas is presented, which is composed of a circular or armular patch and a trapeziform ground plane with a tapered CPW feeder in the middle. Both simulated and experimental results are presented, showing good agreement and therefore verifying validity of the design. The proposed antenna with a circular monopole patch achieves an 11.6: 1 measured ratio bandwidth of VSWR ≤2 ( from 0,79 GHz to 9.16 GHz), while that with an annular patch obtains a measured ratio impedance bandwidth of 10.6:1 (from 0.87 GHz to 9.47 GHz). In addition, these designs exhibit nearly omnidirectional radiation patterns with simple compact structures, which axe attractive in communications and others UWB applications.展开更多
Applying Parikh's quantum tunneling model, we study the quantum tunneling radiation of Reissne- Nordstrom de Sitter black hole with a global monopole. The result shows that the tunneling rates at the event horizon an...Applying Parikh's quantum tunneling model, we study the quantum tunneling radiation of Reissne- Nordstrom de Sitter black hole with a global monopole. The result shows that the tunneling rates at the event horizon and the cosmic horizon are related to Bekenstein-Hawking entropy if we take the energy conservation into consideration, and the true radiate spectrum is not precisely thermal.展开更多
We extend Parikh's recent work to Schwarzchild-anti-de Sitter black hole with topological defect whose Arnowitt-Deser-Misner (ADM) mass is no longer identical to its mass parameter. We view the Hawking radiation as...We extend Parikh's recent work to Schwarzchild-anti-de Sitter black hole with topological defect whose Arnowitt-Deser-Misner (ADM) mass is no longer identical to its mass parameter. We view the Hawking radiation as a tunnelling process across the event horizon and the cosmological horizon. From the tunnelling probability, we find a leading correction to the semi-classical emission rate. The result employs an underlying unitary theory.展开更多
基金Supported by the PetroChina Science and Technology Project(2021DJ4002,2022DJ3908)。
文摘Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.
文摘Magnetic monopoles stand for the static solution arising from a(1 + 3)–dimensional theory describing the interaction between a real scalar triplet and non–Abelian gauge field. In this paper, we obtain a two–point boundary value problem of a first–order ordinary differential equations from the self–dual monopole model. Then we establish the existence and uniqueness theorem for the problem by using a dynamical shooting method, we also obtain sharp asymptotic estimates for the solutions at infinity.
文摘In this work, the possible structures of electron and proton have been explored. Based on the potential expressions of electron and proton, we found that the electron and proton share the similar structure inside re and rn. And within re and rn, the conventional charge concept stops working, the same charge repelling force doesn’t exist anymore and as a result, the requirement of charge conservation is automatically removed. Whereas beyond re and rn, the potential expressions of electron and proton obey the point charge potentials as we normally understand. Therefore, the conventional charge concept can be applied and the requirement of charge conservation takes effect. Furthermore, a possible mechanism for the creations of electric monopole and magnetic monopole is discussed. In addition, to compare the particle size in micro-world, the balloon criterion is proposed. By this balloon criterion, the proton is determined about 10 times bigger than electron. From the physical picture about electron and proton described above, the stabilities of electron and proton can be explained quite well.
文摘In this paper, the submicroscopic deterministic concept developed by the author is applied to the problem of the neutrino mass. A particle appears from space considered as a mathematical lattice of primary topological balls, and induces a deformation coat in its surrounding. The principles of the interaction of particles with space and through space between themselves are considered in detail. The approach states that real quarks possess only an integer charge (±e) and when moving they periodically change to the monopole state (⇄g) and hence, canonical particles are dynamic dyons. A neutrino emerges as a squeezed quark when it is in a monopole state, or in other words, the quark monopole state (a bubble in the tessellattice) is transferred to the appropriate lepton monopole state (a speck in the tessellattice). The self-mass (a “rest” mass) for each neutrino flavour is calculated. The calculated value of the self-mass for the electron anti-neutrino is 1.22873978 × 10<sup>-36</sup> kg = 0.68927247 eV/c<sup>2</sup>. The concept of neutrino oscillations is revised, and another postulation is proposed, namely, that the transition from lighter to heavier flavors is due to the inelastic scattering of neutrinos on oncoming scatterers. As a result, the neutrino captures the mass defect, becomes heavier, and therefore the transitions V<sub>e</sub>⟶V<sub>μ</sub> and V<sub>μ</sub>⟶V<sub>τ</sub> occur;thus, the number of light neutrinos decreases in the neutrino flux studied.
文摘The Aharonov-Bohm effect (experimentally verified) constitutes an undubitable proof of the non local nature of quantum mechanics and of the gauge character of the electromagnetic interaction. On the other hand, the existence of a Dirac monopole (not yet experimentally confirmed) leads to the quantization of the electric charge. Both phenomena can be mathematically described in the context of fiber bundle theory. Using this approach, we briefly review the mutual determination of the corresponding connections ωA−B, ωDand potentials AA−B±, AD±. This mathematical result gives an additional theoretical support to present day active search of the magnetic charge.
文摘Two magnetic monopole models (i.e., model (I, II)) are presented to discuss the energy resources problem based on magnetic monopole catalytic nuclear decay in massive white dwarfs. We find that the luminosities for most of massive white dwarfs increase as the temperature increases. The luminosities of model (II) are agreed well with those of the observations at relativistic high temperature (e.g., T6=1,10), However, the luminosities of the observations can be five orders of magnitude larger than those of model (I).
文摘The manuscript introduces an “ab initio” quantum model to deduce the Maxwell equations. After general considerations and laying out the model’s theoretical framework, these equations can be derived alongside a broad variety of other results. Specifically, a corollary of the present model proposes a possible mechanism underlying the formation of magnetic monopoles and allows estimating their formation energy in order of magnitude.
文摘A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed for wireless universal serial-bus (WUSB). The antenna is composed of a U-shaped line radiator and a small strip bar and is partially grounded, so that the measured impedance bandwidth of the antenna is about 7. 88 GHz covering 3. 12 to 11 GHz with VSWR below 2, and the expected band rejection of 5.06 to 5. 89 GHz is also obtained. The characteristics of the proposed antenna are analyzed, and the geometric parameters for optimal performance are investigated in detail. A relatively stable, quasi-omnidirectional and quasi-symmetrical radiation pattern is also found. The proposed band-notched UWB antenna requires no external filters to avoid interference with other systems, and thus, greatly simplifies the system design of an ultra wideband WUSB communication system.
基金This work was supported by the Research Program through the National Research Foundation of Korea,NRF-2019R1A2C1005920,S.K.
文摘Due to rapid growth in wireless communication technology,higher bandwidth requirement for advance telecommunication systems,capable of operating on two or higher bands with higher channel capacities and minimum distortion losses is desired.In this paper,a compact Ultra-Wideband(UWB)V-shaped monopole antenna is presented.UWB response is achieved by modifying the ground plane with Chichen Itzia inspired rectangular staircase shape.The proposed V-shaped is designed by incorporating a rectangle,and an inverted isosceles triangle using FR4 substrate.The size of the antenna is 25 mm×26 mm×1.6 mm.The proposed V-shaped monopole antenna produces bandwidth response of 3 GHz Industrial,Scientific,and Medical(ISM),Worldwide Interoperability for Microwave Access(WiMAX),(IEEE 802.11/HIPERLAN band,5G sub 6 GHz)which with an additional square cut amplified the bandwidth response up to 8 GHz ranging from 3.1 GHz to 10.6 GHz attaining UWB defined by Federal Communications Commission(FCC)with a maximum gain of 3.83 dB.The antenna is designed in Ansys HFSS.Results for key performance parameters of the antenna are presented.The measured results are in good agreement with the simulated results.Due to flat gain,uniform group delay,omni directional radiation pattern characteristics and well-matched impedance,the proposed antenna is suitable for WiMAX,ISM and heterogeneous wireless systems.
文摘A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two bandnotched characteristics in WiMAX3.5 GHz and WLAN 5.5 GHz.The size of antenna is 24 mm × 36 mm × 1.6 mm.The simulation results show that waveband range of the antenna is 2.7-10.6 GHz for S11 <-10 dB and the band-notched wavebands are 3.2-3.8 GHz and 5.1-6 GHz.So it has miniaturization,ultra-band and band-notched characteristics.Meanwhile,the radition pattern,directivety and gain are perfect,which meets the practical need.
基金the Research Program through the National Research Foundation of Korea,NRF-2019R1A2C1005920,S.K.
文摘In this paper,a low cost,highly efficient and low profile monopole antenna for ultra-wideband(UWB)applications is presented.A new inverted triangular-shape structure possessing meander lines is designed to achieve a wideband response and high efficiency.To design the proposed structure,three steps are utilized to achieve an UWB response.The bandwidth of the proposed antenna is improved with changing meander lines parameters,miniaturization of the ground width and optimization of the feeding line.The measured and simulated frequency band ranges from 3.2 to 12 GHz,while the radiation patterns are measured at 4,5.3,6 and 8 GHz frequency bands.The overall volume of the proposed antenna is 26×25×1.6 mm^(3);whereas the FR4 material is used as a substrate with a relative permittivity and loss tangent of 4.3 and 0.025,correspondingly.The peak gain of 4 dB is achieved with a radiation efficiency of 80 to 98%for the entire wideband.Design modelling of proposed antenna is performed in ANSYS HFSS 13 software.A decent consistency between the simulated and measured results is accomplished which shows that the proposed antenna is a potential candidate for the UWB applications.
基金Project supported by the National Natural Science Foundation of China(Grant No10675051)
文摘This paper derives the Hawking flux from the Schwarzschild black hole with a global monopole by using Robinson and Wilczek's method. Adopting a dimensional reduction technique, it can describe the effective quantum field in the (3 + 1)-dimensional global monopole background by an infinite collection of the (1 + 1)-dimensional massless fields if neglecting the ingoing modes near the horizon, where the gravitational anomaly can be cancelled by the (1 + 1)- dimensional black body radiation at the Hawking temperature.
基金supported by the National Natural Science Foundation of China(Nos.51178037 and10632020)the German Research Foundation(DFG)(Nos.ZH 15/11-1 and ZH 15/16-1)+1 种基金the International Bureau of the German Federal Ministry of Education and Research(BMBF)(No.CHN11/045)the National Basic Research Program of China(No.2010CB732104)
文摘A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed of arbitrarily shaped cylinders embedded in a host medium. In order to find the eigenvalues of the problem, besides the sources used to expand the wave field, an extra monopole source is introduced which acts as the external excitation. By varying the frequency of the excitation, the eigenvalues can be localized as the extreme points of an appropriately chosen function. By sweeping the frequency range of interest and sweeping the boundary of the irreducible first Brillouin zone, the band structure is obtained. Some numerical examples are presented to validate the proposed method.
基金This work was supported in parts by Institute for Information and Communication Technology Promotion(IITP)(A study on Public Health and Safety in a Complex EMF Environment),under Grant 2019-0-00102,and in part by Radio Research Agency(RRA)(Development of Rapid Antenna Measurement Technique for Antennas with New Radio Technology).
文摘This paper presents an AMC(artificial magnetic conductor)-based wideband circularly polarized printed monopole antenna for unidirectional radiation.The antenna includes an AMC reflector,a coplanar waveguide(CPW)feed structure to excite the antenna,a ground plane with a rectangular slot on the left side of feedline,and an asymmetrical ground plane on its right side.The induced surface currents on CWP feedline,rectangularly slotted,and asymmetrical ground planes cause circularly polarized radiations.The AMC reflector consisting periodic metallic square patches is used instead of the conventional PEC(perfect electric conductor)reflector,the distance between the antenna and reflector is reduced from 0.25λ0 to 0.18λ0 with performance improvement.By incorporating AMC layer with the monopole antenna,the gain of antenna is increased from 3.3 dBic to 8.7 dBic while the axial ratio bandwidth(ARBW)of antenna is increased from 27.27%to 51.67%.The simulated and measured results show that the proposed antenna has an overlapping 10-dB|S_(11)|and 3-dB ARBW of 51.67%(3.0–5.09 GHz).The overall dimensions of monopole antenna backed by AMC reflector is 1.20_(λ0)×1.20_(λ0)×0.21_(λ0) and covers 5G sub-6 GHz new radio bands(n77/n78/n79)for wireless communication systems.
文摘Monopoles and vortices are well known magnetically charged soliton solutions of gauge field equations. Extending the idea of Dirac on monopoles, Schwinger pioneered the concept of solitons carrying both electric and magnetic charges, called dyons, which are useful in modeling elementary particles. Mathematically, the existence of dyons presents interesting variational partial differential equation problems, subject to topological constraints. This article is a survey on recent progress in the study of dyons.
基金Supported by the National High Technology and Development Program of China(2001AA631050)
文摘Based on the symmetry of the structure, a two-dimensional finite difference time domain (FDTD) method is used to analyze the sleeve monopole antenna on the infinite perfect conductor ground fed by a coaxial line. The fields in time domain are then turned into frequency domain through the discrete Fourier Transform to compute the surface current distribution and the input impedance of the sleeve monopole antenna. The gain or pattern of the monopole antenna is also computed, employing the combination of the image theory and the near-to-far transformation in frequency domain. All the computed results agree very well with the results of other methods and measured ones, verifying the application of the FDTD method to analyze the sleeve monopole antennas. The voltage standing wave ratio (VSWR) of the sleeve monopole antennas with different heights and radii of the sleeve are checked to study the influence of the sleeve, which indicates that the height and the radius of the sleeve are both important to the impedance bandwidth of the sleeve monopole antennas.
文摘A new type of ultra-wideband (UWB) printed monopole antennas is presented, which is composed of a circular or armular patch and a trapeziform ground plane with a tapered CPW feeder in the middle. Both simulated and experimental results are presented, showing good agreement and therefore verifying validity of the design. The proposed antenna with a circular monopole patch achieves an 11.6: 1 measured ratio bandwidth of VSWR ≤2 ( from 0,79 GHz to 9.16 GHz), while that with an annular patch obtains a measured ratio impedance bandwidth of 10.6:1 (from 0.87 GHz to 9.47 GHz). In addition, these designs exhibit nearly omnidirectional radiation patterns with simple compact structures, which axe attractive in communications and others UWB applications.
基金The project supported by National Natural Science Foundation of China under Grant No. 10347008
文摘Applying Parikh's quantum tunneling model, we study the quantum tunneling radiation of Reissne- Nordstrom de Sitter black hole with a global monopole. The result shows that the tunneling rates at the event horizon and the cosmic horizon are related to Bekenstein-Hawking entropy if we take the energy conservation into consideration, and the true radiate spectrum is not precisely thermal.
文摘We extend Parikh's recent work to Schwarzchild-anti-de Sitter black hole with topological defect whose Arnowitt-Deser-Misner (ADM) mass is no longer identical to its mass parameter. We view the Hawking radiation as a tunnelling process across the event horizon and the cosmological horizon. From the tunnelling probability, we find a leading correction to the semi-classical emission rate. The result employs an underlying unitary theory.