期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effects of Monsoon Winds and Topographical Features on the Vertical Thermohaline and Biogeochemical Structure in the Gulf of Tadjourah (Djibouti)
1
作者 Youssouf Moussa Omar Laurent Memery +2 位作者 Xavier Carton Abdourahman Daher Eric Duvielbourg 《Open Journal of Marine Science》 2016年第3期440-455,共16页
The vertical thermohaline and biogeochemical structures of the upper layer (0 - 200 m) were studied in the Gulf of Tadjourah using high-resolution hydrographic data collected in July-August 2013, September 2013 and Fe... The vertical thermohaline and biogeochemical structures of the upper layer (0 - 200 m) were studied in the Gulf of Tadjourah using high-resolution hydrographic data collected in July-August 2013, September 2013 and February 2014. During summer, the superficial layer consisted of the mixed layer (ML) extending to a depth of about 20 - 30 m followed by the thermocline located between 30 and 50 m depth. The ML was thicker in the west and the southeast where the thermal gradient and chlorophyll a concentrations were particularly high. During September, this stratification persisted but the ML became warmer and saltier and the thermocline moved slightly deeper. In February, the ML extended to about 120 m, and the thermocline was less pronounced. A comparison of the directly measured currents to the wind induced Ekman current and to geostrophic velocity profiles revealed that the thermohaline and the biogeochemical features in summer were related to the southwest monsoon (SWM). The SWM drives surface water from the Gulf of Tadjourah to the Gulf of Aden and thus induces westward intrusion of the high salinity thermocline water from the Gulf of Aden;this near surface flow mixes surface waters in the extreme west of the Gulf of Tajourah. In contrast, the northeast monsoon (NEM), predominant in winter, brings cold water toward the Gulf of Tadjourah and thickens the ML through convective mixing. Our study shows that the SWM plays a crucial role in the stratification of the water column during summer but bathymetry influences its effects. The bowl-shape of the basin and its elongated slope in the west enhance the upwelling in this area where negative sea surface temperature anomalies and high chlorophyll a concentrations were observed. 展开更多
关键词 THERMOHALINE Biogeochemical Structures Mixed Layer Depth THERMOCLINE monsoon Wind Topography
下载PDF
Temperatures and Winds over Tropical Middle Atmosphere during Two Contrasting Summer Monsoons, 1975 and 1979
2
作者 B.K.Mukherjee C.P.Kulkarni +1 位作者 K.Indira K.K.Dani 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1989年第3期325-334,共10页
Using the monthly geopotential heights and winds for 700 and 200 hPa for India during July and August, and the weekly M-100 Soviet rocketsonde temperature and wind data for Thumba (8.5 ° N, 76.9 ° E) during ... Using the monthly geopotential heights and winds for 700 and 200 hPa for India during July and August, and the weekly M-100 Soviet rocketsonde temperature and wind data for Thumba (8.5 ° N, 76.9 ° E) during the last week of June and the first week of September for the two contrasting summer monsoon years 1975 (a very strong monsoon year) and 1979 (a very weak monsoon year), a study has been made to examine the mean circulation features of the troposphere over India, and the structures of the temperatures and the winds of the middle atmosphere over Thumba. The study suggested that the axis of the monsoon trough (AMT) at 700 hPa shifted southward in 1975 and northward towards the foothills of the Himalayas in 1979, from its normal position. Superimposed on the low-pressure area (AMT) at 700 hPa, a well-defined divergence was noticed at 200 hPa over the northern India in 1975.The mean temperatures at 25,50 and 60 km (middle atmosphere) over Thumba were cooler in 1975 than in 1979. While a cooling trend in 1975 and warming trend in 1979 were observed at 25 and 50 km, a reversed picture was noticed at 60 km. There was a weak easterly / westerly (weak westerly phase) zonal wind in 1975 and a strong easterly zonal wind in 1979. A phase reversal of the zonal wind was observed at 50 km. A tentative physical mechanism was offered, in terms of upward propagation of the two equatorially trapped planetary waves i.e. the Kelvin and the mixed Rossby-gravity waves, to explain the occurrence of the two spells of strong warmings in the mesosphere in 1975. 展开更多
关键词 OVER In and 1979 Temperatures and winds over Tropical Middle Atmosphere during Two Contrasting Summer monsoons
下载PDF
Tropical Stratospheric Circulation and Monsoon Rainfall 被引量:1
3
作者 A.B.Sikder S.K.Patwardhan H.N.Bhalme 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1993年第3期379-385,共7页
Interannual variability of both SW monsoon (June-September) and NE monsoon (October-December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly ... Interannual variability of both SW monsoon (June-September) and NE monsoon (October-December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly zonal wind anomaly for 10 hPa, 30 hPa and 50 hPa at Balboa (9°N, 80°W) for the 29 year period (1958-1986). Correlations of zonal wind anomalies to SW monsoon rainfall (r = 0.57, significant at 1% level) is highest with the longer lead time (August of the previous year) at 10 hPa level suggesting some predictive value for Coastal Andhra Pradesh. The probabilities estimated from the contingency table reveal non-occurrence of flood during easterly wind anomalies and near non-occurrence of drought during westerly anomalies for August of the previous year at 10 hPa which provides information for forecasting of performance of SW monsoon over Coastal Andhra Pradesh. However, NE monsoon has a weak relationship with zonal wind anomalies of 10 hPa, 30 hPa and 50 hPa for Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu.Tracks of the SW monsoon storms and depressions in association with the stratospheric wind were also examined to couple with the fluctuations in SW monsoon rainfall. It is noted that easterly / westerly wind at 10 hPa, in some manner, suppresses / enhances monsoon storms and depressions activity affecting their tracks. 展开更多
关键词 QBO Stratospheric wind and monsoon rainfall Interannual variability of SW monsoon Probability forecasts of droughts / floods
下载PDF
Abnormality of the monsoon wind in the sea area along the southeasterncoast of China and the response of the northern areaof the South China Sea during the ENSO events
4
作者 Liu Zanpei, Song Wanxian, Lin Shaohua and Zhang Dongsheng First Insititute of Oceanography, State Oceanic Administration, P. O. Box 98. , Qingdao 266003, China Marine Scientific and Technological Data Center, Tianjin 300171, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1992年第3期389-400,共12页
-Variations of monsoon wind field in the sea area along the southeastern coast of China during the ENSO events and its influence on the sea level and sea surface temperature (SST) are explored mainly on the basis of t... -Variations of monsoon wind field in the sea area along the southeastern coast of China during the ENSO events and its influence on the sea level and sea surface temperature (SST) are explored mainly on the basis of the data of monthly mean wind at 850 hPa and five coastal stations during 1973-1987. The results from the analyses of the data and theoretical estimation show that the southwest wind anomalies appeared in the study area during the events, and northeast wind anomalies occurred in general before the events. With the coastline of the area being parallel basically to the direction of the wind, an Ekman transport will result in an accumulation of the water near the coast or a departure of the water from the coast. As a result , the sea level and SST there will be affected markedly. During the events, southwest wind will intensify in the summer, and northeast wind will weaken in the winter. Their total effect is that a large negative anomaly of the sea level and SST will occur. The estimations indicate that the monsoon wind is stronger in the summer and weaker in the winter than the normal by 1-1. 5 m/s during the events, and this anomaly will cause a decrease of the sea level by 7-11 cm . Changes of the wind field, therefore, is mainly responsible for a large negative anomalies of the sea level and SST there during the ENSO events. 展开更多
关键词 Abnormality of the monsoon wind in the sea area along the southeasterncoast of China and the response of the northern areaof the South China Sea during the ENSO events area ENSO
下载PDF
River sediment supply, sedimentation and transport of the highly turbid sediment plume in Malindi Bay, Kenya
5
作者 JOHNSON U. Kitheka 《Journal of Geographical Sciences》 SCIE CSCD 2013年第3期465-489,共25页
The paper presents results of a study on the sediment supply and movement of highly turbid sediment plume within Malindi Bay in the Northern region of the Kenya coast. The current velocities, tidal elevation, salinity... The paper presents results of a study on the sediment supply and movement of highly turbid sediment plume within Malindi Bay in the Northern region of the Kenya coast. The current velocities, tidal elevation, salinity and suspended sediment concentrations (TSSC) were measured in stations located within the bay using Aanderaa Recording Current Meter (RCM-9), Turbidity Sensor mounted on RCM-9, Divers Gauges and Aanderaa Tempera- ture-Salinity Meter. The study established that Malindi Bay receives a high terrigenous sedi- ment load amounting to 5.7 x 106 ton.yr-1. The river freshwater supply into the bay is highly variable ranging from 7 to 680 m3.s-1. The high flows that are 〉 150 m3.s^-1 occurred in May during the South East Monsoon (SEM). Relatively low peak flows occurred in November during the North East Monsoon (NEM) but these were usually 〈70 m3.s^-1. The discharge of highly turbidity river water into the bay in April and May occurs in a period of high intensity SEM winds that generate strong north flowing current that transports the river sediment plume northward. However, during the NEM, the river supply of turbid water is relatively low occur- ring in a period of relatively low intensity NEM winds that result in relatively weaker south flowing current that transports the sediment plume southward. The mechanism of advection of the sediment plume north or south of the estuary is mainly thought to be due to the Ekman transport generated by the onshore monsoon winds. Limited movement of the river sediment plume southward towards Ras Vasco Da Gama during NEM has ensured that the coral reef ecosystem in the northern parts of Malindi Marine National Park has not been completely destroyed by the influx of terrigenous sediments. However, to the north there is no coral reef ecosystem. The high sediment discharge into Malindi Bay can be attributed to land use change in the Athi-Sabaki River Basin in addition to rapid population increase which has led to clearance of forests to open land for agriculture, livestock grazing and settlement. The problems of heavy siltation in the bay can be addressed by implementing effective soil con- servation programmes in the Athi-Sabaki Basin. However, the soil conservation programmes in the basin are yet to succeed due to widespread poverty among the inhabitants and the complications brought about by climate change. 展开更多
关键词 sediment plume monsoon winds longshore currents Athi-Sabaki River Malindi Bay Kenya
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部