In terms of Kuo-Qian pesigma incorporated coordinate five-level primitive equation spheric band (70°N-30°S)model with the Ural high's effect introduced into it as initial and boundary conditions, study i...In terms of Kuo-Qian pesigma incorporated coordinate five-level primitive equation spheric band (70°N-30°S)model with the Ural high's effect introduced into it as initial and boundary conditions, study is made of the high's influence on Asian summer monsoon circulation and dryness / wetness of eastern China based on case contrast andcontrol experiments. Rusults show that as an excitation source, the blocking high produces a SE-NW stationarywavetrain with its upper-air atnicyclonic divergent circulation oust over a lower-level trough zone) precisely over themiddle to lower reaches of the Changjiang River, enhancing East Asian westerly jet, a situation that contributes toPerturbation growth, causing an additional secondary meridional circulation at the jet entrance, which intensifies theupdraft in the monsoon area. As such, the high's presence and its excited steady wavetrain represent the large-scalekey factors and acting mechanisms for the rainstorm over the Changjiang-Huaihe River catchment in the easternpart of the land.展开更多
As shown in comparison and study of the HIRS-Tb12 data and conventional data, temperature, humidity and vertical motion are structured differently in the Southern and Northern Hemispheres, which are well depicted with...As shown in comparison and study of the HIRS-Tb12 data and conventional data, temperature, humidity and vertical motion are structured differently in the Southern and Northern Hemispheres, which are well depicted with the HIRS-Tb12 data. When high pressures rapidly decrease over the regions of South China Sea and Arabian Sea with the HIRS-Tb12 less than 200 W/m2, monsoons will set off in the South China Sea, Arabian Sea and Bay of Bengal, respectively. From a year of significant drought to one of significant floods, the trend of evolution is significantly different in the downdraft areas of the subtropical highs between the two hemispheres.展开更多
The evolution of summer monsoon over East Asia is the result of multi-scale interactions, including the large-scale subtropical high, upper level jet and regional-scale Meiyu front, vortex, and thermal heating. Region...The evolution of summer monsoon over East Asia is the result of multi-scale interactions, including the large-scale subtropical high, upper level jet and regional-scale Meiyu front, vortex, and thermal heating. Regional Climate Models should be a better way to simulate the summer monsoon evolution, because not only they can reflect the large-scale forcing through boundary condition, theirs high resolution can also catch regional-scale forcing in detail. To evaluate the ability of SUNYA-ReCM to simulate the evolution of the summer monsoon over East Asia especially in the extreme climate, a simulation of the East Asian flood that occurred during 1991 summer was performed. This simulation was driven by large-scale atmospheric background derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) and Tropic Ocean Global Atmospheric (TOGA) analysis. The model is capable of reproducing the major features of the monthly mean monsoon circulation, anomalous rainfall in the Yangtze-Huai River Valley and the two northward jumps of rainfall belt as well as the other large-scale components of the monsoon. The changes of the large-scale circulation during the evolution of summer monsoon are also well simulated, which include: (1) the wind direction changes from southeasterly to southwesterly in the South China Sea. (2) The northward shift of the upper westerly over East China and the Tibetan Plateau. (3) The northward shift of the western Pacific subtropic high at 500 hPa. The model also has a good simulation on the evolution of the regional-scale components of the monsoon, including Meiyu front and southwest (SW) vortex in Sichuan Basin.展开更多
Interannual variability of both SW monsoon (June-September) and NE monsoon (October-December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly ...Interannual variability of both SW monsoon (June-September) and NE monsoon (October-December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly zonal wind anomaly for 10 hPa, 30 hPa and 50 hPa at Balboa (9°N, 80°W) for the 29 year period (1958-1986). Correlations of zonal wind anomalies to SW monsoon rainfall (r = 0.57, significant at 1% level) is highest with the longer lead time (August of the previous year) at 10 hPa level suggesting some predictive value for Coastal Andhra Pradesh. The probabilities estimated from the contingency table reveal non-occurrence of flood during easterly wind anomalies and near non-occurrence of drought during westerly anomalies for August of the previous year at 10 hPa which provides information for forecasting of performance of SW monsoon over Coastal Andhra Pradesh. However, NE monsoon has a weak relationship with zonal wind anomalies of 10 hPa, 30 hPa and 50 hPa for Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu.Tracks of the SW monsoon storms and depressions in association with the stratospheric wind were also examined to couple with the fluctuations in SW monsoon rainfall. It is noted that easterly / westerly wind at 10 hPa, in some manner, suppresses / enhances monsoon storms and depressions activity affecting their tracks.展开更多
Recent advances in studies of the structural characteristics and temporal-spatial variations of the East Asian monsoon (EAM) system and the impact of this system on severe climate disasters in China are reviewed. Pr...Recent advances in studies of the structural characteristics and temporal-spatial variations of the East Asian monsoon (EAM) system and the impact of this system on severe climate disasters in China are reviewed. Previous studies have improved our understanding of the basic characteristics of horizontal and vertical structures and the annual cycle of the EAM system and the water vapor transports in the EAM region. Many studies have shown that the EAM system is a relatively independent subsystem of the Asian- Australian monsoon system, and that there exists an obvious quasi-biennial oscillation with a meridional tripole pattern distribution in the interannual variations of the EAM system. Further analyses of the basic physical processes, both internal and external, that influence the variability of the EAM system indicate that the EAM system may be viewed as an atmosphere-ocean-land coupled system, referred to the EAM climate system in this paper. Further, the paper discusses how the interaction and relationships among various components of this system can be described through the East Asia Pacific (EAP) teleconnection pattern and the teleconnection pattern of meridional upper-tropospheric wind anomalies along the westerly jet over East Asia. Such reasoning suggests that the occurrence of severe floods in the Yangtze and Hualhe River valleys and prolonged droughts in North China are linked, respectively~ to the background interannual and interdecadal variability of the EAM climate system. Besides, outstanding scientific issues related to the EAM system and its impact on climate disasters in China are also discussed.展开更多
Based on the drought/flood grades of 90 meterological stations over eastern China and summer average sea-level pressure (SLP) during 1850-2008 and BPCCA statistical methods, the coupling relationship between the dro...Based on the drought/flood grades of 90 meterological stations over eastern China and summer average sea-level pressure (SLP) during 1850-2008 and BPCCA statistical methods, the coupling relationship between the drought/flood grades and the East Asian summer SLP is analyzed. The East Asian summer monsoon index which is closely related with interdecadal variation of drought/flood distribution over eastern China is defined by using the key areas of SLP. The impact of the interdecadal variation of the East Asian summer monsoon on the distribution of drought/flood over eastern China in the last 159 years is researched. The results show that there are four typical drought and flood spatial distribution patterns in eastern China, i.e. the distribution of drought/flood in southern China is contrary to the other regions, the distribution of drought/flood along the Huanghe River–Huaihe River Valley is contrary to the Yangtze River Valley and regions south of it, the distribution of drought/flood along the Yangtze River Valley and Huaihe River Valley is contrary to the other regions, the distribution of drought/flood in eastern China is contrary to the western. The main distribution pattern of SLP in summer is that the strength of SLP is opposite in Asian continent and West Pacific. It has close relationship between the interdecadal variation of drought/flood distribution patterns over eastern China and the interdecadal variation of the East Asian summer monsoon which was defined in this paper, but the correlation is not stable and it has a significant difference in changes of interdecadal phase. When the East Asian summer monsoon was stronger (weaker), regions north of the Yangtze River Valley was more susceptible to drought (flood), the Yangtze River Valley and regions south of it were more susceptible to flood (drought) before the 1920s; when the East Asian summer monsoon was stronger (weaker), the regions north of the Yangtze River Valley was prone to flood (drought), the Yangtze River Valley and regions south of it were prone to drought (flood) after the 1920s. It is indicated that by using the data of the longer period could get much richer results than by using the data of the last 50–60 years. The differences in the interdecadal phase between the East Asian summer monsoon and the drought/flood distributions in eastern China may be associated with the nonlinear feedback, which is the East Asian summer monsoon for the extrinsic forcing of solar activity.展开更多
It has been shown by the observed data that during the early 1990′s, the severe disastrous climate occurred in East Asia. In the summer of 1991, severe flood occurred in the Yangtze River and the Huaihe River basin o...It has been shown by the observed data that during the early 1990′s, the severe disastrous climate occurred in East Asia. In the summer of 1991, severe flood occurred in the Yangtze River and the Huaihe River basin of China and in South Korea, and it also appeared in South Korea in the summer of 1993. However, in the summer of 1994, a dry and hot summer was caused in the Huaihe River basin of China and in R. O. K.. In order to investigate the seasonal predictability of the summer droughts and floods during the early 1990′s in East Asia, the seasonal prediction experiments of the summer droughts and floods in the summers of 1991-1994 in East Asia have been made by using the Institute of Atmopsheric Physics-Two-Level General Circulation Model (IAP-L2 AGCM), the IAP-Atmosphere/Ocean Coupled Model (IAP-CGCM) and the IAP-L2 AGCM including a filtering scheme, respectively. Compared with the observational facts, it is shown that the IAP-L2 AGCM or IAP-CGCM has some predictability for the summer droughts and floods during the early 1990′s in East Asia, especially for the severe droughts and floods in China and R. O. K.. In this study, a filtering scheme is used to improve the seasonal prediction experiments of the summer droughts and floods during the early 1990′s in East Asia. The predicted results show that the filtering scheme to remain the planetary-scale disturbances is an effective method for the improvement of the seasonal prediction of the summer droughts and floods in East Asia.展开更多
The impacts of climate change on the discharge regimes in New Brunswick (Canada) were analyzed, using artificial neural network models. Future climate data were extracted from the Canadian Coupled General Climate Mode...The impacts of climate change on the discharge regimes in New Brunswick (Canada) were analyzed, using artificial neural network models. Future climate data were extracted from the Canadian Coupled General Climate Model (CGCM3.1) under the greenhouse gas emission scenarios B1 and A2 defined by the Intergovernmental Panel on Climate Change (IPCC). The climate change fields (temperatures and precipitation) were downscaled using the delta change approach. Using the artificial neural network, future river discharge was predicted for selected hydrometric stations. Then, a frequency analysis was carried out using the Generalized Extreme Value (GEV) distribution function, where the parameters of the distribution were estimated using L-moments method. Depending on the scenario and the time slice used, the increase in low return floods was about 30% and about 15% for higher return floods. Low flows showed increases of about 10% for low return droughts and about 20% for higher return droughts. An important part of the design process using frequency analysis is the estimation of future change in floods or droughts under climate scenarios at a given site and for specific return periods. This was carried out through the development of Regional Climate Index (RCI), linking future floods and droughts to their frequencies under climate scenarios B1 and A2.展开更多
Based on the annual variation of the rainfall departure percentage in summer in the lower-middle reaches of the Yangtze River and the Huaihe River valley, 7 cases for the abnormal drought and flooding summers (the dro...Based on the annual variation of the rainfall departure percentage in summer in the lower-middle reaches of the Yangtze River and the Huaihe River valley, 7 cases for the abnormal drought and flooding summers (the drought years: 1981. 1984, 1985; the flooding yearst 1980, 1982, 1983, 1987) are selected. First we analyse the general circulation characteristics of the summer drought and flooding, and then the evolution processes of the general circulation patterns from preceding winters to summers are studied. It is found that during the two kinds of preceding winters for the drought and flooding summer, not only the general circulation patterns in the high-mid latitudes, the local Hadley cells in East Asia but also the activities of the cold surge in the lower latitude are different obviously. Spring, especially April, is the turning period of the general circulation in preceding winter for the drought or nooding summer evolution towards opposite direction. Hereafter, the drought or flooding circulation pattern is established and developed.展开更多
Based on the mesoscale surface observation data,the relationship between rainfall and drought-flood in Yalu River and Donggang offshore area was analyzed. Analysis on atmospheric circulation showed that the movement o...Based on the mesoscale surface observation data,the relationship between rainfall and drought-flood in Yalu River and Donggang offshore area was analyzed. Analysis on atmospheric circulation showed that the movement of weather system affected the production of precipitation directly and resulted into the formation of drought and flood years. On the basis of analyzing general law above,a further analysis on the relationship of monsoon and drought-flood was carried out,as well as the effect of topography on rainfall.展开更多
Based on the daily regional mean rainfall,the Z-index method is used to identify persistent flood and drought events lasting for at least 10 days over a region where Dongting Lake and Poyang Lake sit(referred to as th...Based on the daily regional mean rainfall,the Z-index method is used to identify persistent flood and drought events lasting for at least 10 days over a region where Dongting Lake and Poyang Lake sit(referred to as the"two-lake region"hereafter).The National Centers for Environmental Prediction(NCEP)reanalysis data are then utilized to perform a preliminary diagnostic analysis on these events.The results indicate that the composite standardized geopotential height at 500 hPa presents two different meridional wave trains from north to south over the East Asian-Pacific region,i.e.,a"-+-"pattern for the droughts and a"+-+"pattern for the floods,respectively.The developing,maintaining and decaying phases in the drought and flood events are closely related to the intensity and location of a subtropical high and an extra-tropical blocking high.It is shown that the East Asian summer monsoon is strong(weak)with the occurrence of persistent drought(flood)events.Droughts(floods)are accompanied by a weak(strong)tropical convergent system and a strong(weak)subtropical convergent system.Furthermore,the persistent drought(flood)events are associated with a divergence(convergence)of vertically integrated water vapor flux.In the vertical profile of water vapor flux,divergence(convergence)in the mid-and lower-levels and convergence(divergence)in the higher levels are evident in the droughts(floods).Both the divergence in the droughts and the convergence in floods are strongest at 850 hPa.展开更多
The observed data of the sea surface temperature (SST) anomalies and the sea temperature (ST) in the sub-layer of the equatorial Pacific, the NCEP/ NCAR reanalysis data and the data set of daily precipitation in China...The observed data of the sea surface temperature (SST) anomalies and the sea temperature (ST) in the sub-layer of the equatorial Pacific, the NCEP/ NCAR reanalysis data and the data set of daily precipitation in China are used to analyze the characteristics of the 1997 / 98 ENSO cycle and its impact on summer climate anomalies in East Asia. The results show that the 1997/98 ENSO cycle, the strongest one in the 20th century, might be characterized by rapid development and decay and eastward propagation from the West Pacific warm pool. Influenced by the ENSO cycle, in 1997, the serious drought and hot summer occurred in North China, and in the summer of 1998, the severe floods occurred in the Yangtze River valley, especially in the Dongting Lake and Boyang Lake valleys, South Korea and Japan. The analysis also shows that: influenced by the 1997/98 ENSO cycle, the water vapor transportation by the Asian monsoon in the summer of 1997 was very different from that in the summer of 1998. In the summer of 1997, the water vapor transportation by the Asian summer monsoon was weak in North China and the northern part of the Korea Peninsula. Thus, it caused the drought and hot summer in North China. However, in the summer of 1998, the sea temperature in the sub-layer of the West Pacific warm pool dropped, the western Pacific subtropical high shifted southward. Thus, a large amount of water vapor was transported from the Bay of Bengal, the South China Sea and the tropical western Pacific into the Yangtze River valley of China, South Korea and Japan, and the severe flood occurred there. Key words ENSO cycle - Climate anomaly - Monsoon - Drought and flood This study was supported by the National Key Programme for Developing Basic Sciences under Grant No. G1998040900(I).展开更多
Using the CAM3.0 model, we investigated the respective effects of aerosol concentration increasing and decadal variation of global sea surface temperature(SST) around year 1976/77 on the East Asian precipitation in bo...Using the CAM3.0 model, we investigated the respective effects of aerosol concentration increasing and decadal variation of global sea surface temperature(SST) around year 1976/77 on the East Asian precipitation in boreal summer. By doubling the concentration of the sulfate aerosol and black carbon aerosol separately and synchronously in East Asia(100-150 °E, 20-50 °N), the climate effects of these aerosols are specifically investigated. The results show that both the decadal SST changing and aerosol concentration increasing could lead to rainfall decreasing in the center of East Asia, but increasing in the regions along southeast coast areas of China. However, the different patterns of rainfall over ocean and lower wind field over Asian continent between aerosol experiments and SST experiments in CAM3.0 indicate the presence of different mechanisms. In the increased aerosol concentration experiments, scattering effect is the main climate effect for both sulfate and black carbon aerosols in the Eastern Asian summer. Especially in the increased sulfate aerosol concentration experiment, the climate scattering effect of aerosol leads to the most significant temperature decreasing, sinking convection anomalies and decreased rainfall in the troposphere over the central part of East Asia. However, in an increased black carbon aerosol concentration experiment, weakened sinking convection anomalies exist at the southerly position. This weakened sinking and its compensating rising convection anomalies in the south lead to the heavy rainfall over southeast coast areas of China. When concentrations of both sulfate and black carbon aerosols increase synchronously, the anomalous rainfall distribution is somewhat like that in the increased black carbon concentration aerosol experiment but with less intensity.展开更多
The paper concerns a flood/drought prediction model involving the continuation of time series of a predictand and the physical factors influencing the change of predictand.Attempt is made to construct the model by the...The paper concerns a flood/drought prediction model involving the continuation of time series of a predictand and the physical factors influencing the change of predictand.Attempt is made to construct the model by the neural network scheme for the nonlinear mapping relation based on multi-input and single output.The model is found of steadily higher predictive accuracy by testing the output from one and multiple stepwise predictions against observations and comparing the results to those from a traditional statistical model.展开更多
When linear regressive models such as AR or ARMA model are used for fitting and predicting climatic time series,results are often not sufficiently good because nonlinear variations in the time series.In this paper, a ...When linear regressive models such as AR or ARMA model are used for fitting and predicting climatic time series,results are often not sufficiently good because nonlinear variations in the time series.In this paper, a nonlinear self-exciting threshold autoregressive(SETAR)model is applied to modeling and predicting the time series of flood/drought runs in Beijing,which were derived from the graded historical flood/drought records in the last 511 years(1470—1980).The results show that the modeling and predicting with the SETAR model are much better than that of the AR model.The latter can predict the flood/drought runs with a length only less than two years,while the formal can predict more than three-year length runs.This may be due to the fact that the SETAR model can renew the model according to the run-turning points in the process of predic- tion,though the time series is nonstationary.展开更多
The most important climatological feature of the South Asian region is the occurrence of monsoons. With increasing concerns about climate change, the need to understand the nature and variability of such climatic cond...The most important climatological feature of the South Asian region is the occurrence of monsoons. With increasing concerns about climate change, the need to understand the nature and variability of such climatic conditions and to evaluate possible future changes becomes increasingly important. This paper deals with long-term above and below normal monsoon precipitation causing prolong meteorological droughts and floods in India. Five regions across India comprising variable climates were selected for the study. Apart from long-term trends for individual regions, long-term trends were also calculated for the Indian region as a whole. The results show that intra-region variability for monsoon precipitation is large and there are increasing numbers of meteorological summer droughts. Meteorological monsoon floods were found to have negative long-term trends everywhere except in the peninsular Indian region. The results overall suggest generic conclusions concerning the region-wide long-term trend of severity of monsoon droughts and floods in India and their spatial variability.展开更多
文摘In terms of Kuo-Qian pesigma incorporated coordinate five-level primitive equation spheric band (70°N-30°S)model with the Ural high's effect introduced into it as initial and boundary conditions, study is made of the high's influence on Asian summer monsoon circulation and dryness / wetness of eastern China based on case contrast andcontrol experiments. Rusults show that as an excitation source, the blocking high produces a SE-NW stationarywavetrain with its upper-air atnicyclonic divergent circulation oust over a lower-level trough zone) precisely over themiddle to lower reaches of the Changjiang River, enhancing East Asian westerly jet, a situation that contributes toPerturbation growth, causing an additional secondary meridional circulation at the jet entrance, which intensifies theupdraft in the monsoon area. As such, the high's presence and its excited steady wavetrain represent the large-scalekey factors and acting mechanisms for the rainstorm over the Changjiang-Huaihe River catchment in the easternpart of the land.
基金Essential Scientific Research Project in the national 9th five-year development plan (96-908-05-06-08)
文摘As shown in comparison and study of the HIRS-Tb12 data and conventional data, temperature, humidity and vertical motion are structured differently in the Southern and Northern Hemispheres, which are well depicted with the HIRS-Tb12 data. When high pressures rapidly decrease over the regions of South China Sea and Arabian Sea with the HIRS-Tb12 less than 200 W/m2, monsoons will set off in the South China Sea, Arabian Sea and Bay of Bengal, respectively. From a year of significant drought to one of significant floods, the trend of evolution is significantly different in the downdraft areas of the subtropical highs between the two hemispheres.
文摘The evolution of summer monsoon over East Asia is the result of multi-scale interactions, including the large-scale subtropical high, upper level jet and regional-scale Meiyu front, vortex, and thermal heating. Regional Climate Models should be a better way to simulate the summer monsoon evolution, because not only they can reflect the large-scale forcing through boundary condition, theirs high resolution can also catch regional-scale forcing in detail. To evaluate the ability of SUNYA-ReCM to simulate the evolution of the summer monsoon over East Asia especially in the extreme climate, a simulation of the East Asian flood that occurred during 1991 summer was performed. This simulation was driven by large-scale atmospheric background derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) and Tropic Ocean Global Atmospheric (TOGA) analysis. The model is capable of reproducing the major features of the monthly mean monsoon circulation, anomalous rainfall in the Yangtze-Huai River Valley and the two northward jumps of rainfall belt as well as the other large-scale components of the monsoon. The changes of the large-scale circulation during the evolution of summer monsoon are also well simulated, which include: (1) the wind direction changes from southeasterly to southwesterly in the South China Sea. (2) The northward shift of the upper westerly over East China and the Tibetan Plateau. (3) The northward shift of the western Pacific subtropic high at 500 hPa. The model also has a good simulation on the evolution of the regional-scale components of the monsoon, including Meiyu front and southwest (SW) vortex in Sichuan Basin.
文摘Interannual variability of both SW monsoon (June-September) and NE monsoon (October-December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly zonal wind anomaly for 10 hPa, 30 hPa and 50 hPa at Balboa (9°N, 80°W) for the 29 year period (1958-1986). Correlations of zonal wind anomalies to SW monsoon rainfall (r = 0.57, significant at 1% level) is highest with the longer lead time (August of the previous year) at 10 hPa level suggesting some predictive value for Coastal Andhra Pradesh. The probabilities estimated from the contingency table reveal non-occurrence of flood during easterly wind anomalies and near non-occurrence of drought during westerly anomalies for August of the previous year at 10 hPa which provides information for forecasting of performance of SW monsoon over Coastal Andhra Pradesh. However, NE monsoon has a weak relationship with zonal wind anomalies of 10 hPa, 30 hPa and 50 hPa for Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu.Tracks of the SW monsoon storms and depressions in association with the stratospheric wind were also examined to couple with the fluctuations in SW monsoon rainfall. It is noted that easterly / westerly wind at 10 hPa, in some manner, suppresses / enhances monsoon storms and depressions activity affecting their tracks.
基金This paper was supported by the "National Key Programme for Developing Basic Sciences" under Grant No. G2006CB403600Knowledge Innovation for the 3rd Period,Chinese Academy of Sciences under Grant No. KZCX2-YW-220the National Natural Science Foundation of China under Grant Nos. 40730952, 40575026, 40775051 respectively.
文摘Recent advances in studies of the structural characteristics and temporal-spatial variations of the East Asian monsoon (EAM) system and the impact of this system on severe climate disasters in China are reviewed. Previous studies have improved our understanding of the basic characteristics of horizontal and vertical structures and the annual cycle of the EAM system and the water vapor transports in the EAM region. Many studies have shown that the EAM system is a relatively independent subsystem of the Asian- Australian monsoon system, and that there exists an obvious quasi-biennial oscillation with a meridional tripole pattern distribution in the interannual variations of the EAM system. Further analyses of the basic physical processes, both internal and external, that influence the variability of the EAM system indicate that the EAM system may be viewed as an atmosphere-ocean-land coupled system, referred to the EAM climate system in this paper. Further, the paper discusses how the interaction and relationships among various components of this system can be described through the East Asia Pacific (EAP) teleconnection pattern and the teleconnection pattern of meridional upper-tropospheric wind anomalies along the westerly jet over East Asia. Such reasoning suggests that the occurrence of severe floods in the Yangtze and Hualhe River valleys and prolonged droughts in North China are linked, respectively~ to the background interannual and interdecadal variability of the EAM climate system. Besides, outstanding scientific issues related to the EAM system and its impact on climate disasters in China are also discussed.
基金National Natural Science Foundation of China No.40890053 Special Scientific Fund for Non-profit Public Industry (Meteorology) No.GYHY200906016 No.GYHY201006038
文摘Based on the drought/flood grades of 90 meterological stations over eastern China and summer average sea-level pressure (SLP) during 1850-2008 and BPCCA statistical methods, the coupling relationship between the drought/flood grades and the East Asian summer SLP is analyzed. The East Asian summer monsoon index which is closely related with interdecadal variation of drought/flood distribution over eastern China is defined by using the key areas of SLP. The impact of the interdecadal variation of the East Asian summer monsoon on the distribution of drought/flood over eastern China in the last 159 years is researched. The results show that there are four typical drought and flood spatial distribution patterns in eastern China, i.e. the distribution of drought/flood in southern China is contrary to the other regions, the distribution of drought/flood along the Huanghe River–Huaihe River Valley is contrary to the Yangtze River Valley and regions south of it, the distribution of drought/flood along the Yangtze River Valley and Huaihe River Valley is contrary to the other regions, the distribution of drought/flood in eastern China is contrary to the western. The main distribution pattern of SLP in summer is that the strength of SLP is opposite in Asian continent and West Pacific. It has close relationship between the interdecadal variation of drought/flood distribution patterns over eastern China and the interdecadal variation of the East Asian summer monsoon which was defined in this paper, but the correlation is not stable and it has a significant difference in changes of interdecadal phase. When the East Asian summer monsoon was stronger (weaker), regions north of the Yangtze River Valley was more susceptible to drought (flood), the Yangtze River Valley and regions south of it were more susceptible to flood (drought) before the 1920s; when the East Asian summer monsoon was stronger (weaker), the regions north of the Yangtze River Valley was prone to flood (drought), the Yangtze River Valley and regions south of it were prone to drought (flood) after the 1920s. It is indicated that by using the data of the longer period could get much richer results than by using the data of the last 50–60 years. The differences in the interdecadal phase between the East Asian summer monsoon and the drought/flood distributions in eastern China may be associated with the nonlinear feedback, which is the East Asian summer monsoon for the extrinsic forcing of solar activity.
文摘It has been shown by the observed data that during the early 1990′s, the severe disastrous climate occurred in East Asia. In the summer of 1991, severe flood occurred in the Yangtze River and the Huaihe River basin of China and in South Korea, and it also appeared in South Korea in the summer of 1993. However, in the summer of 1994, a dry and hot summer was caused in the Huaihe River basin of China and in R. O. K.. In order to investigate the seasonal predictability of the summer droughts and floods during the early 1990′s in East Asia, the seasonal prediction experiments of the summer droughts and floods in the summers of 1991-1994 in East Asia have been made by using the Institute of Atmopsheric Physics-Two-Level General Circulation Model (IAP-L2 AGCM), the IAP-Atmosphere/Ocean Coupled Model (IAP-CGCM) and the IAP-L2 AGCM including a filtering scheme, respectively. Compared with the observational facts, it is shown that the IAP-L2 AGCM or IAP-CGCM has some predictability for the summer droughts and floods during the early 1990′s in East Asia, especially for the severe droughts and floods in China and R. O. K.. In this study, a filtering scheme is used to improve the seasonal prediction experiments of the summer droughts and floods during the early 1990′s in East Asia. The predicted results show that the filtering scheme to remain the planetary-scale disturbances is an effective method for the improvement of the seasonal prediction of the summer droughts and floods in East Asia.
文摘The impacts of climate change on the discharge regimes in New Brunswick (Canada) were analyzed, using artificial neural network models. Future climate data were extracted from the Canadian Coupled General Climate Model (CGCM3.1) under the greenhouse gas emission scenarios B1 and A2 defined by the Intergovernmental Panel on Climate Change (IPCC). The climate change fields (temperatures and precipitation) were downscaled using the delta change approach. Using the artificial neural network, future river discharge was predicted for selected hydrometric stations. Then, a frequency analysis was carried out using the Generalized Extreme Value (GEV) distribution function, where the parameters of the distribution were estimated using L-moments method. Depending on the scenario and the time slice used, the increase in low return floods was about 30% and about 15% for higher return floods. Low flows showed increases of about 10% for low return droughts and about 20% for higher return droughts. An important part of the design process using frequency analysis is the estimation of future change in floods or droughts under climate scenarios at a given site and for specific return periods. This was carried out through the development of Regional Climate Index (RCI), linking future floods and droughts to their frequencies under climate scenarios B1 and A2.
文摘Based on the annual variation of the rainfall departure percentage in summer in the lower-middle reaches of the Yangtze River and the Huaihe River valley, 7 cases for the abnormal drought and flooding summers (the drought years: 1981. 1984, 1985; the flooding yearst 1980, 1982, 1983, 1987) are selected. First we analyse the general circulation characteristics of the summer drought and flooding, and then the evolution processes of the general circulation patterns from preceding winters to summers are studied. It is found that during the two kinds of preceding winters for the drought and flooding summer, not only the general circulation patterns in the high-mid latitudes, the local Hadley cells in East Asia but also the activities of the cold surge in the lower latitude are different obviously. Spring, especially April, is the turning period of the general circulation in preceding winter for the drought or nooding summer evolution towards opposite direction. Hereafter, the drought or flooding circulation pattern is established and developed.
文摘Based on the mesoscale surface observation data,the relationship between rainfall and drought-flood in Yalu River and Donggang offshore area was analyzed. Analysis on atmospheric circulation showed that the movement of weather system affected the production of precipitation directly and resulted into the formation of drought and flood years. On the basis of analyzing general law above,a further analysis on the relationship of monsoon and drought-flood was carried out,as well as the effect of topography on rainfall.
基金China Meteorological Administration for the R&D Special Fund for Public Welfare Industry(Meteorology)(GYHY201306016)
文摘Based on the daily regional mean rainfall,the Z-index method is used to identify persistent flood and drought events lasting for at least 10 days over a region where Dongting Lake and Poyang Lake sit(referred to as the"two-lake region"hereafter).The National Centers for Environmental Prediction(NCEP)reanalysis data are then utilized to perform a preliminary diagnostic analysis on these events.The results indicate that the composite standardized geopotential height at 500 hPa presents two different meridional wave trains from north to south over the East Asian-Pacific region,i.e.,a"-+-"pattern for the droughts and a"+-+"pattern for the floods,respectively.The developing,maintaining and decaying phases in the drought and flood events are closely related to the intensity and location of a subtropical high and an extra-tropical blocking high.It is shown that the East Asian summer monsoon is strong(weak)with the occurrence of persistent drought(flood)events.Droughts(floods)are accompanied by a weak(strong)tropical convergent system and a strong(weak)subtropical convergent system.Furthermore,the persistent drought(flood)events are associated with a divergence(convergence)of vertically integrated water vapor flux.In the vertical profile of water vapor flux,divergence(convergence)in the mid-and lower-levels and convergence(divergence)in the higher levels are evident in the droughts(floods).Both the divergence in the droughts and the convergence in floods are strongest at 850 hPa.
文摘The observed data of the sea surface temperature (SST) anomalies and the sea temperature (ST) in the sub-layer of the equatorial Pacific, the NCEP/ NCAR reanalysis data and the data set of daily precipitation in China are used to analyze the characteristics of the 1997 / 98 ENSO cycle and its impact on summer climate anomalies in East Asia. The results show that the 1997/98 ENSO cycle, the strongest one in the 20th century, might be characterized by rapid development and decay and eastward propagation from the West Pacific warm pool. Influenced by the ENSO cycle, in 1997, the serious drought and hot summer occurred in North China, and in the summer of 1998, the severe floods occurred in the Yangtze River valley, especially in the Dongting Lake and Boyang Lake valleys, South Korea and Japan. The analysis also shows that: influenced by the 1997/98 ENSO cycle, the water vapor transportation by the Asian monsoon in the summer of 1997 was very different from that in the summer of 1998. In the summer of 1997, the water vapor transportation by the Asian summer monsoon was weak in North China and the northern part of the Korea Peninsula. Thus, it caused the drought and hot summer in North China. However, in the summer of 1998, the sea temperature in the sub-layer of the West Pacific warm pool dropped, the western Pacific subtropical high shifted southward. Thus, a large amount of water vapor was transported from the Bay of Bengal, the South China Sea and the tropical western Pacific into the Yangtze River valley of China, South Korea and Japan, and the severe flood occurred there. Key words ENSO cycle - Climate anomaly - Monsoon - Drought and flood This study was supported by the National Key Programme for Developing Basic Sciences under Grant No. G1998040900(I).
基金National Key Program for Developing Basic Science(2016YFA0600303)National Natural Science Foundation of China(41675064,41621005,41330420,41275068)+2 种基金Jiangsu Province Science Foundation(SBK2015020577)Key Laboratory Project Foundation(KLME1501)Jiangsu Collaborative Innovation Center for Climate Change
文摘Using the CAM3.0 model, we investigated the respective effects of aerosol concentration increasing and decadal variation of global sea surface temperature(SST) around year 1976/77 on the East Asian precipitation in boreal summer. By doubling the concentration of the sulfate aerosol and black carbon aerosol separately and synchronously in East Asia(100-150 °E, 20-50 °N), the climate effects of these aerosols are specifically investigated. The results show that both the decadal SST changing and aerosol concentration increasing could lead to rainfall decreasing in the center of East Asia, but increasing in the regions along southeast coast areas of China. However, the different patterns of rainfall over ocean and lower wind field over Asian continent between aerosol experiments and SST experiments in CAM3.0 indicate the presence of different mechanisms. In the increased aerosol concentration experiments, scattering effect is the main climate effect for both sulfate and black carbon aerosols in the Eastern Asian summer. Especially in the increased sulfate aerosol concentration experiment, the climate scattering effect of aerosol leads to the most significant temperature decreasing, sinking convection anomalies and decreased rainfall in the troposphere over the central part of East Asia. However, in an increased black carbon aerosol concentration experiment, weakened sinking convection anomalies exist at the southerly position. This weakened sinking and its compensating rising convection anomalies in the south lead to the heavy rainfall over southeast coast areas of China. When concentrations of both sulfate and black carbon aerosols increase synchronously, the anomalous rainfall distribution is somewhat like that in the increased black carbon concentration aerosol experiment but with less intensity.
基金the Excellent Talent Foundation of the State Education Commission.
文摘The paper concerns a flood/drought prediction model involving the continuation of time series of a predictand and the physical factors influencing the change of predictand.Attempt is made to construct the model by the neural network scheme for the nonlinear mapping relation based on multi-input and single output.The model is found of steadily higher predictive accuracy by testing the output from one and multiple stepwise predictions against observations and comparing the results to those from a traditional statistical model.
文摘When linear regressive models such as AR or ARMA model are used for fitting and predicting climatic time series,results are often not sufficiently good because nonlinear variations in the time series.In this paper, a nonlinear self-exciting threshold autoregressive(SETAR)model is applied to modeling and predicting the time series of flood/drought runs in Beijing,which were derived from the graded historical flood/drought records in the last 511 years(1470—1980).The results show that the modeling and predicting with the SETAR model are much better than that of the AR model.The latter can predict the flood/drought runs with a length only less than two years,while the formal can predict more than three-year length runs.This may be due to the fact that the SETAR model can renew the model according to the run-turning points in the process of predic- tion,though the time series is nonstationary.
文摘The most important climatological feature of the South Asian region is the occurrence of monsoons. With increasing concerns about climate change, the need to understand the nature and variability of such climatic conditions and to evaluate possible future changes becomes increasingly important. This paper deals with long-term above and below normal monsoon precipitation causing prolong meteorological droughts and floods in India. Five regions across India comprising variable climates were selected for the study. Apart from long-term trends for individual regions, long-term trends were also calculated for the Indian region as a whole. The results show that intra-region variability for monsoon precipitation is large and there are increasing numbers of meteorological summer droughts. Meteorological monsoon floods were found to have negative long-term trends everywhere except in the peninsular Indian region. The results overall suggest generic conclusions concerning the region-wide long-term trend of severity of monsoon droughts and floods in India and their spatial variability.