The montane forests of Garhwal Himalaya were investigated for tree species composition and diversity in relation to environmental and edaphic variables.A stratified random sampling approach was adopted to collect the ...The montane forests of Garhwal Himalaya were investigated for tree species composition and diversity in relation to environmental and edaphic variables.A stratified random sampling approach was adopted to collect the field data from each forest.A total of 39 tree species belonging to 31 genera and 23 families were recorded from the sampling area(6 forest stands ×10 plots in each).Lauraceae with 5 species was the largest family while Quercus(4 species) emerged as the largest genus.Species-area curve(asymptote) predicted more species than the observed number of species.Cluster analysis has shown that the two Abies pindrow dominant forest stands had the highest similarity in tree species composition.The tree stem density ranged from 540-1170 ha-1,basal area 23.01-55.94 m^2 ha-1,ShannonWiener diversity index 1.69-2.49,evenness index0.42-0.74,beta diversity 0.40-0.82 and similarity index 0.17-0.54 in the six studied forests.Two-way indicator species analysis(TWINSPAN) identified four distinct tree communities in the study area with Daphniphyllum himalayense,Abies pindrow,Quercus oblongata,and Pinus roxburghii as indicator species of corresponding communities.Canonical correspondence analysis(CCA) ascertained the TWINSPAN results and revealed the relation of tree species with environmental and edaphic variables.The phytosociological attributes of tree species varied from one forest stand to another;however,the tree species richness,density,and diversity peaked at intermediate elevation on the north aspect.Findings reveal that tree composition and diversity in the montane forests of Garhwal Himalaya are influenced by both environmental(elevation and slope aspect)and soil variables(texture,water holding capacity,moisture content,available N,exchangeable P,and pH).This study will help in understanding the forest distribution across the western Himalaya,guiding the conservationists and policymakers in carrying out conservation-related management activities,designing the long-term monitoring studies and assessing the effects of ongoing and future climate change and disturbances.展开更多
Background: Tropical forests play an important role in the global carbon(C) cycle.However, tropical montane forests have been studied less than tropical lowland forests, and their role in carbon storage is not well...Background: Tropical forests play an important role in the global carbon(C) cycle.However, tropical montane forests have been studied less than tropical lowland forests, and their role in carbon storage is not well understood.Montane forests are highly endangered due to logging, land-use and climate change.Our objective was to analyse how the carbon balance changes during forest succession.Methods: In this study, we used a method to estimate local carbon balances that combined forest inventory data with process-based forest models.We utilised such a forest model to study the carbon balance of a tropical montane forest in South Ecuador, comparing two topographical slope positions(ravines and lower slopes vs upper slopes and ridges).Results: The simulation results showed that the forest acts as a carbon sink with a maximum net ecosystem exchange(NEE) of 9.3 Mg C?(ha?yr)-1during its early successional stage(0–100 years).In the late successional stage, the simulated NEE fluctuated around zero and had a variation of 0.77 Mg C?(ha?yr)–1.The simulated variability of the NEE was within the range of the field data.We discovered several forest attributes(e.g., basal area or the relative amount of pioneer trees) that can serve as predictors for NEE for young forest stands(0–100 years) but not for those in the late successional stage(500–1,000 years).In case of young forest stands these correlations are high, especially between stand basal area and NEE.Conclusion: In this study, we used an Ecuadorian study site as an example of how to successfully link a forest model with forest inventory data, for estimating stem-diameter distributions, biomass and aboveground net primary productivity.To conclude, this study shows that process-based forest models can be used to investigate the carbon balance of tropical montane forests.With this model it is possible to find hidden relationships between forest attributes and forest carbon fluxes.These relationships promote a better understanding of the role of tropical montane forests in the context of global carbon cycle, which in future will become more relevant to a society under global change.展开更多
Sericostaehys seandens is a monocarpic and heliophilous liana, native in tropical African forests. In the montane forests of the Kahuzi-Biega National Park (KBNP) (East of DR Congo), it has been expanding very str...Sericostaehys seandens is a monocarpic and heliophilous liana, native in tropical African forests. In the montane forests of the Kahuzi-Biega National Park (KBNP) (East of DR Congo), it has been expanding very strongly for a decade, and is currently considered as having negative impacts on biodiversity conservation. In this paper, we test if S. scandens differs from three co-occurring, native, non spreading lianas (Gouania longispicata, Tacazzea apiculata and Adenia bequaertii) for functional traits which might influence plant expansion. For leaf traits (SLA, dry matter content, nitrogen concentration), S. scandens did not show extreme values compared to those of the three other lianas. In contrast, S. scandens had much higher biomass allocation to sexual reproduction. It also differs from the three other lianas for its reproductive strategy that combines both vegetative propagation and sexual reproduct/on, and propagule dispersal by wind. Moreover, S. scandens has larger leaves and a greater number of lateral branches per unit stem length. It is argued that the particular combination of functional traits exhibited by S.scandens may in part explain its propensity to behave as an opportunistic weed in the disturbed areas in the montane forests of Kahuzi-Biega.展开更多
Background:Andean montane forests(AMF)are biodiversity hotspots that provide fundamental hydrological services as well as carbon storage and sequestration.In recent decades,southern Ecuador AMFs have been seriously th...Background:Andean montane forests(AMF)are biodiversity hotspots that provide fundamental hydrological services as well as carbon storage and sequestration.In recent decades,southern Ecuador AMFs have been seriously threatened by increased logging and conversion to forest plantations with exotic species.In this context,our main objective was to evaluate the effects of AMF conversion to forest plantations on soil physicochemical properties in the buffer zone(Bz)of the Podocarpus National Park(PNP),in southern Ecuador.For this purpose,random samples were taken at a depth of 0-10 cm in four plots in each contrast zone and analyzed for bulk density,porosity,textural class,leaf litter depth,soil pH,as well as the contents of organic matter(SOM),soil organic carbon(SOC),total nitrogen,and available phosphorus and potassium.Results:The results indicate that the conversion of AMFs produces an increase in bulk density and a decrease in SOM,SOC,and total nitrogen contents,thus modifying soil properties,which could result in a decrease in water regulation capacity and produce an increased risk of soil erosion.This accelerates degradation processes,as well as threatens shortages of the drinking water supply.Conclusions:This study can help decision-makers to implement soil management plans in the Bz of the PNP,based on the implementation of new regulations,where the conservation of AMF is promoted.In addition,it is recommended to apply environmental restoration strategies in the anthropized areas of the AMF,as well as in the areas with exotic eucalyptus and pine plantations.展开更多
Environmental conditions can change markedly over geographical distances along elevation gradients,making them natural laboratories to study the processes that structure communities.This work aimed to assess the influ...Environmental conditions can change markedly over geographical distances along elevation gradients,making them natural laboratories to study the processes that structure communities.This work aimed to assess the influences of elevation on Tropical Montane Cloud Forest plant communities in the Brazilian Atlantic Forest,a historically neglected ecoregion.We evaluated the phylogenetic structure,forest structure(tree basal area and tree density)and species richness along an elevation gradient,as well as the evolutionary fingerprints of elevation-success on phylogenetic lineages from the tree communities.To do so,we assessed nine communities along an elevation gradient from 1210 to 2310 m a.s.l.without large elevation gaps.The relationships between elevation and phylogenetic structure,forest structure and species richness were investigated through Linear Models.The occurrence of evolutionary fingerprint on phylogenetic lineages was investigated by quantifying the extent of phylogenetic signal of elevation-success using a genus-level molecular phylogeny.Our results showed decreased species richness at higher elevations and independence between forest structure,phylogenetic structure and elevation.We also verified that there is a phylogenetic signal associated with elevation-success by lineages.We concluded that the elevation is associated with species richness and the occurrence of phylogenetic lineages in the tree communities evaluated in Mantiqueira Range.On the other hand,elevation is not associated with forest structure or phylogenetic structure.Furthermore,closely related taxa tend to have their higher ecological success in similar elevations.Finally,we highlight the fragility of the tropical montane cloud forests in the Mantiqueira Range in face of environmental changes(i.e.global warming)due to the occurrence of exclusive phylogenetic lineages evolutionarily adapted to environmental conditions(i.e.minimum temperature)associated with each elevation range.展开更多
Cloud forests are unusual and fragile habitats, being one of the least studied and least understood ecosystems. The tropical Andean dominion is considered one of the most significant places in the world as regards bio...Cloud forests are unusual and fragile habitats, being one of the least studied and least understood ecosystems. The tropical Andean dominion is considered one of the most significant places in the world as regards biological diversity, with a very high level of endemism. The biodiversity was analysed in an isolated remnant area of a tropical montane cloud forest known as the "Bosque de Neblina de Cuyas", in the North of the Peruvian Andean range. Composition, structure and dead wood were measured or estimated. The values obtained were compared with other cloud forests. The study revealed a high level of forest biodiversity, although the level of biodiversity differs from one area to another: in the inner areas, where human pressure is almost inexistent, the biodiversity values increase. The high species richness and the low dominance among species bear testimony to this montane cloud forest as a real enclave of biodiversity.展开更多
We conducted a study in Komto Forest in East WoUega Zone, Oromia National Regional State, West Ethiopia for determining vegetation structure and regeneration status in this forest. We systematically sampled 53 quadra...We conducted a study in Komto Forest in East WoUega Zone, Oromia National Regional State, West Ethiopia for determining vegetation structure and regeneration status in this forest. We systematically sampled 53 quadrats (20 m ×20 m) along line transects radiating from the peak of Komto Mountain in eight directions. Vegetation parameters such as DBH, height, seedling and sapling density of woody species, and location and altitude of each quadrat were recorded. In total, 103 woody plant species of 87 genera and 45 families were identified. Analysis of selected tree species revealed different population structures. Generally, the forest was dominated by small trees and shrubs characteristic of secondary regeneration. Observations on the regeneration of the forest indicated that there are woody species that require urgent conservation measures. Based on the results of this study, we recommend detailed ecological studies of various environmental factors such as soil type and properties, and ethnobotanical studies to explore indigenous knowledge on uses of plants.展开更多
Understanding atmospheric mercury(Hg) accumulation in remote montane forests is critical to assess the Hg ecological risk to wildlife and human health. To quantify impacts of vegetation, climatic and topographic facto...Understanding atmospheric mercury(Hg) accumulation in remote montane forests is critical to assess the Hg ecological risk to wildlife and human health. To quantify impacts of vegetation, climatic and topographic factors on Hg accumulation in montane forests, we assessed the Hg distribution and stoichiometric relations among Hg, carbon(C), and nitrogen(N) in four forest types along the elevation of Mt. Gongga. Our results show that Hg concentration in plant tissues follows the descending order of litter > leaf, bark > root > branch > bole wood, indicating the importance of atmospheric Hg uptake by foliage for Hg accumulation in plants. The foliar Hg/C(from 237.0 ± 171.4 to 56.8 ± 27.7 μg/kg) and Hg/N(from 7.5 ± 3.9 to 2.5 ± 1.2 mg/kg) both decrease along the elevation. These elevation gradients are caused by the heterogeneity of vegetation uptake of atmospheric Hg and the variation of atmospheric Hg ° concentrations at different altitudes. Organic soil Hg accumulation is controlled by forest types, topographic and climatic factors, with the highest concentration in the mixed forest(244.9 ± 55.7 μg/kg) and the lowest value in the alpine forest(151.9 ±44.5 μg/kg). Further analysis suggests that soil Hg is positively correlated to C( r^(2) = 0.66) and N( r^(2) = 0.57), and Hg/C and Hg/N both increase with the soil depth. These stoichiometric relations highlight the combined effects from environmental and climatic factors which mediating legacy Hg accumulation and selective Hg absorption during processes of organic soil mineralization.展开更多
The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous,island-like,distribution.It is diverse,rich in endemic species,and likely to be sensitive...The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous,island-like,distribution.It is diverse,rich in endemic species,and likely to be sensitive to climate change.Six 1-ha sampling plots were established across the main distribution area of the upper montane evergreen broad-leaved forest in Yunnan.All trees with d.b.h.>1 cm in each plot were identified.Patterns of seed plant distributions were quantified at the specific,generic and family levels.The forests are dominated by the families Fagaceae,Lauraceae,Theaceae and Magnoliaceae,but are very diverse with only a few species shared between sites.Floristic similarities at the family and generic level were high,but they were low at the specific level,with species complementarity between plots.Diversity varied greatly among sites,with greater species richness and more rare species in western Yunnan than central Yunnan.The flora is dominated by tropical biogeographical elements,mainly the pantropic and the tropical Asian distributions at the family and genus levels.In contrast,at the species level,the flora is dominated by the southwest or the southeast China distributions,including Yunnan endemics.This suggests that the flora of the upper montane forest in Yunnan could have a tropical floristic origin,and has adapted to cooler temperatures with the uplift of the Himalayas.Due to great sensitivity to climate,high endemism and species complementarity,as well as the discontinuous,island-like,distribution patterns of the upper montane forest in Yunnan,the regional conservation of the forest is especially needed.展开更多
A pristine montane rain forest was recently discovered from Mengsong of Xishuangbanna in the southern Yunnan. It attracts botanists that many primitive plant taxa across various life forms were co-existed in the monta...A pristine montane rain forest was recently discovered from Mengsong of Xishuangbanna in the southern Yunnan. It attracts botanists that many primitive plant taxa across various life forms were co-existed in the montane rain forest. In order to know the biogeography of the montane rain forest, distribution patterns of some species of biogeographical importance from the montane forest were enumerated and their biogeographical implications were discussed with geological explanation. It was concluded that the montane rain forest in the southern Yunnan has strong affinity to montane rain forests in Sumatra or Southeast Asia in broad sense. It was tentatively suggested that Sumatra could be once connected to Myanmar and drifted away due to northward movement of continental Asia by bumping of India plate.展开更多
Plants diversity and phenological pattern of the trees were monitored in a montane wet temperate forest (shola) in the Kukkal Forest, Palni hills of the southern Western Ghats, India. Twelve random plots were select...Plants diversity and phenological pattern of the trees were monitored in a montane wet temperate forest (shola) in the Kukkal Forest, Palni hills of the southern Western Ghats, India. Twelve random plots were selected for sampling the vegetation. For phenological studies, twenty-three fleshy fruit trees were identified in the study area and 10 individuals of each species were selected to record the phenological events fortnightly between April 2002 and April 2004. The phenological events were divided into vegetative and reproductive phases. A total of 2279 individuals were inventoried which belong to 83 species, 68 genera and 40 families. About 30% of the species were endemic to the Western Ghats. The most dominant species (〉 1 cm dbh) was Psychotria nilgiriensis var. astephana (Rubiaceae), which accounted for 12% of the total sampled individuals. Lauraceae was the dominant family accounting for 20% of the individuals. Fruiting peak occurred in July 2003 and least in June 2002. During the peak period, fruits of 85 individuals of six species were observed. Syzygium tamilnadensis, Ilex wightiana and Beilschmiedia wightii fruited only once during the two years of study. The number of fruiting species showed no correlation with rainfall (r = 0.26, p = 0.2), while a correlation was found with fruit abundance (r = 0.40, p 〈 0.05). The results indicate that the montane wet temperate forest is unique in their diversity and a conspicuous display in phenology.展开更多
In tropical montane forests,compositional and structural changes are commonly driven by broad-scale altitudinal variation.Here,given the lack of knowledge on small-scale vegetation changes and temporal dynamics,we add...In tropical montane forests,compositional and structural changes are commonly driven by broad-scale altitudinal variation.Here,given the lack of knowledge on small-scale vegetation changes and temporal dynamics,we address the effects of small-scale variations in soil and altitude on tree community structure,temporal dynamics and phylogenetic diversity in a semi-deciduous tropical forest of the Atlantic Forest Domain,southeastern Brazil.In 2010 and 2015 we sampled thirty plots of 400 m^(2),set up along an altitudinal gradient between 1000 and 1500 m a.s.I..In each plot,we collected soil samples for chemical and textural analyses.We fitted linear models to test the effects of altitude and soil on community dynamics and phylogenetic parameters.Altitude and soil explained the spatial variation in number of individuals and phylogenetic diversity metrics.From lower to higher altitudes,we found decreasing fertility,increasing tree density and decreasing phylogenetic diversity.Altitude significantly influenced the increases in total biomass(from 240.9 to 255.4 t ha^(-1))and individual biomass(from 0.15 to 0.17 t)recorded in the interval.And while community temporal dynamics had rates of 1.96%for mortality,1.02%for recruitment,1.61%for biomass loss and 2.81%for biomass gain,none of them were explained by altitude or soil.Temporal species substitution averaged0.1 in the interval.Altogether,these results suggest that the small-scale variations in altitude and soil likely determine the conditions and resources that drive community assembly and structure,which are expressed by spatial variations along the altitudinal gradient.At the same time,temporal patterns were not influenced by altitude-related environmental variation,resulting in a similar dynamic behaviour across the gradient,suggesting that broad-scale factors may play a more important role than local ones.展开更多
The montane closed evergreen forests found at altitudes above 1,800 m in the Western Ghats of India possess a distinct vegetation type and are called shola forests. Despite the fact that these forests are located in r...The montane closed evergreen forests found at altitudes above 1,800 m in the Western Ghats of India possess a distinct vegetation type and are called shola forests. Despite the fact that these forests are located in relatively inaccessible areas, they are still under anthropogenic pressure leading to continued habitat degradation and loss of biomass and biodiversity. A case study was conducted in Mananvan shola, the largest shola forest in Kerala of Western Ghats, to recognize the impact of disturbance on vegetation structure, composition and regeneration pattern, to identify the socio-economic reasons for disturbance and to evolve strategies for its management. In the disturbed part of the forest, dominance of light demanding species in tree, shrub and herb communities has been recorded. Here even the dominance of exotic species in tree seedling, shrub and herb communities is prominent. Skewed girth class distribution of tree community with poor representation by the individuals of girth class 30.1 to 90.0 cm, is also an indication of the collection of small wood and poles from the forest. The RISQ (Ramakrishnan Index of Stand Quality) in the disturbed area of the forest is above 2.0 as against near to 1.0 in relatively undisturbed forest standssuggesting that the disturbance is intensive and thus natural recovery process would be slow. Socio- economic analysis in villages located near the shola forest revealed the fact that the people depended heavily on this forest for their livelihood. Thus, the crux and the success of future management and conservation strategy depend on how one can reduce the dependency of people on the shola vegetation. Enrichment planting in disturbed parts of shola, enhancement of firewood by raising energy plantations, as well as development of lemongrass and firewood based agroforestry systems and reduction of grazing pressure by developing silvopastoral systems are the major strategies for the conservation of these shola forests.展开更多
Humus forms, especially the occurrence and the thickness of the horizon of humified residues (OH), provide valuable information on site conditions. In mountain forest soils, humus forms show a high spatial variabili...Humus forms, especially the occurrence and the thickness of the horizon of humified residues (OH), provide valuable information on site conditions. In mountain forest soils, humus forms show a high spatial variability and data on their spatial patterns is often scarce. Our aim was to test the applicability of various vegetation features as proxy for OH thickness. Subalpine coniferous forests dominated by Picea abies (L.) H. Karst. and Larix decidua Mill. were studied in the Province of Trento, Italian Alps, between ca. 900 and 22o0 m a.s.1. Braun-Blanquet vegetation relevds and OH thickness were recorded at 152 plots. The vegetation parameters, tested for their suitability as indicators of OH thickness, encompassed mean Landolt indicator values of the herb layer (both unweighted and cover-weighted means) as well as parameters of vegetation structure (cover values of plant species groups) calculated from the releves. To our knowledge, the predictive power of Landolt indicator values (LIVs) for humus forms had not been tested before. Correlations between OHthickness and mean LIVs were strongest for the soil reaction value, but indicator values for humus, nutrients, temperature and light were also significantly correlated with OH thickness. Generally, weighting with species cover reduced the indicator quality of mean LIVs for OH thickness. The strongest relationships between OH thickness and vegetation structure existed in the following indicators: the cover of forbs (excluding graminoids and ferns) and the cover of Erieaeeae in the herb layer. Regression models predicting OH thickness based on vegetation structure had almost as much predictive power as models based on LIVs. We conclude that LIVs analysis can produce fairly reliable information regarding the thickness of the OH horizon and, thus, the humus form. If no releve data are readily available, a field estimation of the cover values of certain easily distinguishable herb layer species groups is much faster than a vegetation survey with consecutive indicator value analysis, and might be a feasible way of quickly indicating the humus form.展开更多
In a tropical wet montane evergreen forest in the southern peninsular India, the estimated stocking of dead wood is 90 ± 3 stems·ha-1 and the total dead wood volume is 70.7 m3·ha-1. When the logs (downe...In a tropical wet montane evergreen forest in the southern peninsular India, the estimated stocking of dead wood is 90 ± 3 stems·ha-1 and the total dead wood volume is 70.7 m3·ha-1. When the logs (downed dead trees more than 10.1 cm in diameter) constitute about 80% of the total deadwood stocking and volume, the rest is by snags (sound and rotting standing dead trees). Since the shola forest trees are characterized by their short stature with low to medium girth, about 89% of the total number of deadwood is of the size ranging from 10.1 cm to 40.0 cm in diameter. The estimated standing dead wood/standing live tree ratio is 0.16 indicating that the forest represents an old stand. Variations observed between logs and snags to change from a given decay class to the higher decay classes in two year period could be attributed to the facts that the logs would be in contact with soil for a relatively longer time and in turn would be in more contact with microorganisms and other decomposing agents.展开更多
Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and...Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The region, though surprisingly far from the equator and at a relatively high altitude, has a rich tropical flora and a typical tropical rain forest in the lowland areas. Based on physiognomic and ecological characteristics, floristic composition and habitats combined, the primary vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes, i.e. a tropical seasonal rain forest in the lowlands and a tropical montane rain forest at higher elevations. The tropical seasonal rain forest has almost the same forest profile and physiognomic characteristics as equatorial lowland rain forests and is a type of truly tropical rain forest. Because of conspicuous similarity on ecological and floristic characteristics, the tropical rain forest in Xishuangbanna is a type of tropical Asian rain forest. However, since the tropical rain forest of Xishuangbanna occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in having some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll. It is a type of semi-evergreen rain forest at the northern edge of the tropical zone. The tropical montane rain forest occurs at wet montane habitats and is similar to the lower montane rain forest in equatorial Asia in floristic composition and physiognomy. It is a type of lower montane rain forests within the broader category of tropical rain forests. The tropical seasonal moist forest occurs on middle and upper limestone slopes. It is similar to the tropical montane evergreen broad-leaved forest in the region in physiognomy, but differs from the latter in floristic composition. It is a vegetation type on limestone at high elevations. The monsoon forest in Xishuangbanna is a tropical deciduous forest under the influence of a strong monsoon climate and is considered to be a transitional vegetation type between a tropical rain forest and savanna in physiognomy and distribution. The tropical montane evergreen broad-leaved forest is the main montane vegetation type in the region. It is dominated largely by the families Fagaceae, Euphorbiaceae, Theaceae and Lauraceae. It differs from tropical lower montane rain forests in its lack of epiphytes and in having more abundant lianas and plants with compound leaves. It is considered to be a distinct vegetation type from the northern margin of mainland southeastern Asia, controlled by a strong seasonal climate, based on its floristic and physiognomic characteristics.展开更多
Understanding the effects of elevation and related factors(climate,vegetation) on the physical and chemical soil properties can help to predict changes in response to future climate or afforestation forcings.This work...Understanding the effects of elevation and related factors(climate,vegetation) on the physical and chemical soil properties can help to predict changes in response to future climate or afforestation forcings.This work aims to contribute to the knowledge of soil evolution and the classification of forest soils in relation to elevation in the montane stage,with special attention to podzolization and humus forms.The northern flank of the Moncayo Massif(Iberian Range,SW Europe) provides a unique opportunity to study a forest soils catena within a consistent quartzitic parent material over a relatively steep elevation gradient.With increasing elevation,pH,base saturation,exchangeable potassium,and fine silt-sized particles decrease significantly,while organic matter,the C/N ratio,soil aggregate stability,water repellency and coarse sand-sized particles increase significantly.The soil profiles shared a set of properties in all horizons:loamy-skeletal particle-size,extreme acidity(pH-H_2O<5.6) and low base saturation(<50%).The most prevalent soil forming processes in the catena include topsoil organic matter accumulation and even podzolization,which increases with elevation.From the upper to lower landscape positions of wooded montane stage of the Moncayo Massif,mull-moder-mor humus and an UmbrisolCambisol-Podzol soil unit sequences were found.展开更多
Understanding the mechanisms and barriers to the restoration of degraded land,especially post agriculture,will help provide protocols on effective ways of restoration into functional ecosystems.One of the barriers in ...Understanding the mechanisms and barriers to the restoration of degraded land,especially post agriculture,will help provide protocols on effective ways of restoration into functional ecosystems.One of the barriers in early stages of forest restoration is the arrival and availability of propagules.Seed rain and factors affecting it(i.e.,distance to the forest edge,species diversity and surrounding vegetation)were measured in a reforested post-agricultural field and in an adjacent secondary forest.Multivariate g lm analysis was used on the seed rain community data and univariate lm analysis on the most abundant seed captured(i.e.,Schima wallichii(DC.)Korth.).After 8 months of seed rain collection,there was a total of 3596 seeds from eight tree species.Seeds were more abundant and more diverse in the secondary forest(74.9%,8 species)compared to the reforested field(24.1%,2 species).There was a limitation on seed dispersal in reforested field from the adjacent forest.The abundance of S.wallichii seeds determined by the dominance of adult trees(136 trees/ha in the forest and 115 trees/ha in the reforested field).Our study suggests,that after 7 years of planting,the reforested field has received limited seed rain and has not yet recovered.展开更多
Snow/wind damage is one of the important natural disturbances in forest ecosystems,especially in a montane secondary forest.However,the effects of snow/wind damage remain unclear which affects the management of these ...Snow/wind damage is one of the important natural disturbances in forest ecosystems,especially in a montane secondary forest.However,the effects of snow/wind damage remain unclear which affects the management of these forests.Therefore,we investigated the responses of species,individual tree traits and stand structure to snow/wind damage in a montane secondary forest.Results show that,amongst the canopy trees,Betula costata exhibited the most uprooting,bending and overall damage ratio(the number of damaged stems to the total number of stems in a plot); Quercus mongolica showed the highest breakage ratio and Fraxinus mandshurica and Juglans mandshurica the least overall damage ratios.Among the subcanopy trees,Carpinus cordata,Acer mono,Acer tegmentosum and Acer pseudo-sieboldianum showed the least uprooting and breakage,and the most bending damage.A.pseudo-sieboldianum demonstrated the lowest breakage and highest bending damage ratios.Thesefindings indicate that different species have various sensitivities to snow/wind damage.Larger trees(taller,wider crowns) tend to break and become uprooted,while smaller trees are bent or remain undamaged,suggesting that tree characteristics significantly influence the types of damage from snow and wind.Stands of Q.mongolica and B.costata had the highest damage ratios,whereas A.pseudosieboldianum had the lowest snapping ratio.In summary,the severity and type of snow/wind damage are related to individual tree attributes and stand-level characteristics.Therefore,selection of suitable species(e.g.,shorter,smaller with deep root systems,hard wood,bending resistance and compression resistance) and appropriate thinning are recommended for planting in the montane secondary forests.展开更多
Background:Tropical montane cloud forests are one of the most important hotspots on Earth and show presence of relict-endemic and endangered species,representing about 14%of the total tropical forest worldwide.Synchro...Background:Tropical montane cloud forests are one of the most important hotspots on Earth and show presence of relict-endemic and endangered species,representing about 14%of the total tropical forest worldwide.Synchronous seed production or masting in tropical montane cloud tree species is a widespread reproductive strategy of decidu-ous and evergreen broad-leaved tree associations to decrease costs of reproduction and ensure offspring.Masting event maintains a high avian diversity,which can be modified by phenological process(seed production and non-seed production).Methods:The main aim of this study was to assess alpha and beta avian diversity and whether the composition of the trophic guild modifies among phenological processes and between two fragmented relict-endangered Mexican Beech(Fagus grandifolia subsp.mexicana)forests(Medio Monte and El Gosco)in the Mexican state of Hidalgo.In addi-tion,we evaluated beechnut production.Results:We recorded 36 bird species,11 of them included in some conservation risk status,and 5 endemic species.Alpha diversity values were dissimilar in avian richness(q=0)among phenological processes and between frag-mented beech forests.Avian communities among three phenological processes and between fragmented forests were structurally similar,dominated during immature seeds the Brown-backed Solitaire(granivores-insectivores-frugivores);during mature seeds the White-crowned Parrot(Pionus senilis,granivores-frugivores);and the Dwarf Jay(Cyanolyca nana,insectivores)was abundant during low seed quality.The complementarity index was high among phenological processes and low between forests.We found a high bird turnover value between immature seeds—mature seeds and during mature seeds—low seed quality.Furthermore,a similar pattern was recorded between the two study forests.Seed production showed a high number of undamaged beechnuts in Medio Monte,while in El Gosco beechnuts were attacked by insects.Conclusions:Our results reflect that masting phenological process and contrasting study forests'structure influence the shifts in alpha and beta diversity of seed and non-seed bird consumers.Our study reaffirms the importance of continuing studies throughout masting in all the Mexican Beech forests to address regional efforts in preserving the relict-ecological interactions.展开更多
文摘The montane forests of Garhwal Himalaya were investigated for tree species composition and diversity in relation to environmental and edaphic variables.A stratified random sampling approach was adopted to collect the field data from each forest.A total of 39 tree species belonging to 31 genera and 23 families were recorded from the sampling area(6 forest stands ×10 plots in each).Lauraceae with 5 species was the largest family while Quercus(4 species) emerged as the largest genus.Species-area curve(asymptote) predicted more species than the observed number of species.Cluster analysis has shown that the two Abies pindrow dominant forest stands had the highest similarity in tree species composition.The tree stem density ranged from 540-1170 ha-1,basal area 23.01-55.94 m^2 ha-1,ShannonWiener diversity index 1.69-2.49,evenness index0.42-0.74,beta diversity 0.40-0.82 and similarity index 0.17-0.54 in the six studied forests.Two-way indicator species analysis(TWINSPAN) identified four distinct tree communities in the study area with Daphniphyllum himalayense,Abies pindrow,Quercus oblongata,and Pinus roxburghii as indicator species of corresponding communities.Canonical correspondence analysis(CCA) ascertained the TWINSPAN results and revealed the relation of tree species with environmental and edaphic variables.The phytosociological attributes of tree species varied from one forest stand to another;however,the tree species richness,density,and diversity peaked at intermediate elevation on the north aspect.Findings reveal that tree composition and diversity in the montane forests of Garhwal Himalaya are influenced by both environmental(elevation and slope aspect)and soil variables(texture,water holding capacity,moisture content,available N,exchangeable P,and pH).This study will help in understanding the forest distribution across the western Himalaya,guiding the conservationists and policymakers in carrying out conservation-related management activities,designing the long-term monitoring studies and assessing the effects of ongoing and future climate change and disturbances.
基金financial support of the German Research Foundation(DFG,Research Unit 816)for initializing the forest plots and the plot census as well as a first model parameterisationthe Helmholtz Alliance:Remote Sensing and Earth System Dynamics for financing the work on the further parameterisation of the model and analysis of the data
文摘Background: Tropical forests play an important role in the global carbon(C) cycle.However, tropical montane forests have been studied less than tropical lowland forests, and their role in carbon storage is not well understood.Montane forests are highly endangered due to logging, land-use and climate change.Our objective was to analyse how the carbon balance changes during forest succession.Methods: In this study, we used a method to estimate local carbon balances that combined forest inventory data with process-based forest models.We utilised such a forest model to study the carbon balance of a tropical montane forest in South Ecuador, comparing two topographical slope positions(ravines and lower slopes vs upper slopes and ridges).Results: The simulation results showed that the forest acts as a carbon sink with a maximum net ecosystem exchange(NEE) of 9.3 Mg C?(ha?yr)-1during its early successional stage(0–100 years).In the late successional stage, the simulated NEE fluctuated around zero and had a variation of 0.77 Mg C?(ha?yr)–1.The simulated variability of the NEE was within the range of the field data.We discovered several forest attributes(e.g., basal area or the relative amount of pioneer trees) that can serve as predictors for NEE for young forest stands(0–100 years) but not for those in the late successional stage(500–1,000 years).In case of young forest stands these correlations are high, especially between stand basal area and NEE.Conclusion: In this study, we used an Ecuadorian study site as an example of how to successfully link a forest model with forest inventory data, for estimating stem-diameter distributions, biomass and aboveground net primary productivity.To conclude, this study shows that process-based forest models can be used to investigate the carbon balance of tropical montane forests.With this model it is possible to find hidden relationships between forest attributes and forest carbon fluxes.These relationships promote a better understanding of the role of tropical montane forests in the context of global carbon cycle, which in future will become more relevant to a society under global change.
基金the Belgian Development Cooperation for the financial help
文摘Sericostaehys seandens is a monocarpic and heliophilous liana, native in tropical African forests. In the montane forests of the Kahuzi-Biega National Park (KBNP) (East of DR Congo), it has been expanding very strongly for a decade, and is currently considered as having negative impacts on biodiversity conservation. In this paper, we test if S. scandens differs from three co-occurring, native, non spreading lianas (Gouania longispicata, Tacazzea apiculata and Adenia bequaertii) for functional traits which might influence plant expansion. For leaf traits (SLA, dry matter content, nitrogen concentration), S. scandens did not show extreme values compared to those of the three other lianas. In contrast, S. scandens had much higher biomass allocation to sexual reproduction. It also differs from the three other lianas for its reproductive strategy that combines both vegetative propagation and sexual reproduct/on, and propagule dispersal by wind. Moreover, S. scandens has larger leaves and a greater number of lateral branches per unit stem length. It is argued that the particular combination of functional traits exhibited by S.scandens may in part explain its propensity to behave as an opportunistic weed in the disturbed areas in the montane forests of Kahuzi-Biega.
基金funded by Universidad Técnica Particular de Loja(UTPL-PROY_INV_CCBIO_2020_2773 and research scholarshipⅠ-Ⅱ-ⅢCONV).
文摘Background:Andean montane forests(AMF)are biodiversity hotspots that provide fundamental hydrological services as well as carbon storage and sequestration.In recent decades,southern Ecuador AMFs have been seriously threatened by increased logging and conversion to forest plantations with exotic species.In this context,our main objective was to evaluate the effects of AMF conversion to forest plantations on soil physicochemical properties in the buffer zone(Bz)of the Podocarpus National Park(PNP),in southern Ecuador.For this purpose,random samples were taken at a depth of 0-10 cm in four plots in each contrast zone and analyzed for bulk density,porosity,textural class,leaf litter depth,soil pH,as well as the contents of organic matter(SOM),soil organic carbon(SOC),total nitrogen,and available phosphorus and potassium.Results:The results indicate that the conversion of AMFs produces an increase in bulk density and a decrease in SOM,SOC,and total nitrogen contents,thus modifying soil properties,which could result in a decrease in water regulation capacity and produce an increased risk of soil erosion.This accelerates degradation processes,as well as threatens shortages of the drinking water supply.Conclusions:This study can help decision-makers to implement soil management plans in the Bz of the PNP,based on the implementation of new regulations,where the conservation of AMF is promoted.In addition,it is recommended to apply environmental restoration strategies in the anthropized areas of the AMF,as well as in the areas with exotic eucalyptus and pine plantations.
基金supported this work by granting the doctoral scholarship to Ravi Fernandes Mariano,Carolina Njaime Mendes and Cléber Rodrigo de Souza,and through the master’s scholarship to Aloysio Souza de Mourathe postdoctoral scholarship to Vanessa Leite Rezende+2 种基金The authors also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPQ)by project funding(Edital Universal 2014,Process 459739/2014-0)the Instituto Alto-Montana da Serra Fina,the Fundação de AmparoàPesquisa do Estado de Minas Gerais(FAPEMIG)the Fundação Grupo Boticário de ProteçãoàNatureza,and finally the Fundo de Recuperação,Proteção e Desenvolvimento Sustentável das Bacias Hidrográficas do Estado de Minas Gerais(Fhidro).
文摘Environmental conditions can change markedly over geographical distances along elevation gradients,making them natural laboratories to study the processes that structure communities.This work aimed to assess the influences of elevation on Tropical Montane Cloud Forest plant communities in the Brazilian Atlantic Forest,a historically neglected ecoregion.We evaluated the phylogenetic structure,forest structure(tree basal area and tree density)and species richness along an elevation gradient,as well as the evolutionary fingerprints of elevation-success on phylogenetic lineages from the tree communities.To do so,we assessed nine communities along an elevation gradient from 1210 to 2310 m a.s.l.without large elevation gaps.The relationships between elevation and phylogenetic structure,forest structure and species richness were investigated through Linear Models.The occurrence of evolutionary fingerprint on phylogenetic lineages was investigated by quantifying the extent of phylogenetic signal of elevation-success using a genus-level molecular phylogeny.Our results showed decreased species richness at higher elevations and independence between forest structure,phylogenetic structure and elevation.We also verified that there is a phylogenetic signal associated with elevation-success by lineages.We concluded that the elevation is associated with species richness and the occurrence of phylogenetic lineages in the tree communities evaluated in Mantiqueira Range.On the other hand,elevation is not associated with forest structure or phylogenetic structure.Furthermore,closely related taxa tend to have their higher ecological success in similar elevations.Finally,we highlight the fragility of the tropical montane cloud forests in the Mantiqueira Range in face of environmental changes(i.e.global warming)due to the occurrence of exclusive phylogenetic lineages evolutionarily adapted to environmental conditions(i.e.minimum temperature)associated with each elevation range.
基金supported by Nature and Culture International (NCI-Perú) and partially funded through a Grant from the Universidad Politécnica de Madrid
文摘Cloud forests are unusual and fragile habitats, being one of the least studied and least understood ecosystems. The tropical Andean dominion is considered one of the most significant places in the world as regards biological diversity, with a very high level of endemism. The biodiversity was analysed in an isolated remnant area of a tropical montane cloud forest known as the "Bosque de Neblina de Cuyas", in the North of the Peruvian Andean range. Composition, structure and dead wood were measured or estimated. The values obtained were compared with other cloud forests. The study revealed a high level of forest biodiversity, although the level of biodiversity differs from one area to another: in the inner areas, where human pressure is almost inexistent, the biodiversity values increase. The high species richness and the low dominance among species bear testimony to this montane cloud forest as a real enclave of biodiversity.
文摘We conducted a study in Komto Forest in East WoUega Zone, Oromia National Regional State, West Ethiopia for determining vegetation structure and regeneration status in this forest. We systematically sampled 53 quadrats (20 m ×20 m) along line transects radiating from the peak of Komto Mountain in eight directions. Vegetation parameters such as DBH, height, seedling and sapling density of woody species, and location and altitude of each quadrat were recorded. In total, 103 woody plant species of 87 genera and 45 families were identified. Analysis of selected tree species revealed different population structures. Generally, the forest was dominated by small trees and shrubs characteristic of secondary regeneration. Observations on the regeneration of the forest indicated that there are woody species that require urgent conservation measures. Based on the results of this study, we recommend detailed ecological studies of various environmental factors such as soil type and properties, and ethnobotanical studies to explore indigenous knowledge on uses of plants.
基金funded by the National Natural Science Foundation of China (Nos. 41977272 and 42007307)。
文摘Understanding atmospheric mercury(Hg) accumulation in remote montane forests is critical to assess the Hg ecological risk to wildlife and human health. To quantify impacts of vegetation, climatic and topographic factors on Hg accumulation in montane forests, we assessed the Hg distribution and stoichiometric relations among Hg, carbon(C), and nitrogen(N) in four forest types along the elevation of Mt. Gongga. Our results show that Hg concentration in plant tissues follows the descending order of litter > leaf, bark > root > branch > bole wood, indicating the importance of atmospheric Hg uptake by foliage for Hg accumulation in plants. The foliar Hg/C(from 237.0 ± 171.4 to 56.8 ± 27.7 μg/kg) and Hg/N(from 7.5 ± 3.9 to 2.5 ± 1.2 mg/kg) both decrease along the elevation. These elevation gradients are caused by the heterogeneity of vegetation uptake of atmospheric Hg and the variation of atmospheric Hg ° concentrations at different altitudes. Organic soil Hg accumulation is controlled by forest types, topographic and climatic factors, with the highest concentration in the mixed forest(244.9 ± 55.7 μg/kg) and the lowest value in the alpine forest(151.9 ±44.5 μg/kg). Further analysis suggests that soil Hg is positively correlated to C( r^(2) = 0.66) and N( r^(2) = 0.57), and Hg/C and Hg/N both increase with the soil depth. These stoichiometric relations highlight the combined effects from environmental and climatic factors which mediating legacy Hg accumulation and selective Hg absorption during processes of organic soil mineralization.
基金supported by the National Natural Science Foundation of China,No.41471051,41071040,31170195
文摘The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous,island-like,distribution.It is diverse,rich in endemic species,and likely to be sensitive to climate change.Six 1-ha sampling plots were established across the main distribution area of the upper montane evergreen broad-leaved forest in Yunnan.All trees with d.b.h.>1 cm in each plot were identified.Patterns of seed plant distributions were quantified at the specific,generic and family levels.The forests are dominated by the families Fagaceae,Lauraceae,Theaceae and Magnoliaceae,but are very diverse with only a few species shared between sites.Floristic similarities at the family and generic level were high,but they were low at the specific level,with species complementarity between plots.Diversity varied greatly among sites,with greater species richness and more rare species in western Yunnan than central Yunnan.The flora is dominated by tropical biogeographical elements,mainly the pantropic and the tropical Asian distributions at the family and genus levels.In contrast,at the species level,the flora is dominated by the southwest or the southeast China distributions,including Yunnan endemics.This suggests that the flora of the upper montane forest in Yunnan could have a tropical floristic origin,and has adapted to cooler temperatures with the uplift of the Himalayas.Due to great sensitivity to climate,high endemism and species complementarity,as well as the discontinuous,island-like,distribution patterns of the upper montane forest in Yunnan,the regional conservation of the forest is especially needed.
基金Under the auspices of the National Natural Science Foundation of China (No. 40271048) and Yunnan Natural Science Foundation (No. 2002C0067M)
文摘A pristine montane rain forest was recently discovered from Mengsong of Xishuangbanna in the southern Yunnan. It attracts botanists that many primitive plant taxa across various life forms were co-existed in the montane rain forest. In order to know the biogeography of the montane rain forest, distribution patterns of some species of biogeographical importance from the montane forest were enumerated and their biogeographical implications were discussed with geological explanation. It was concluded that the montane rain forest in the southern Yunnan has strong affinity to montane rain forests in Sumatra or Southeast Asia in broad sense. It was tentatively suggested that Sumatra could be once connected to Myanmar and drifted away due to northward movement of continental Asia by bumping of India plate.
基金conducted as a part of the project on the endemic birds in the Western Ghats funded by the Ministry of Environment and Forest, Government of India (23-1/2001-RE)
文摘Plants diversity and phenological pattern of the trees were monitored in a montane wet temperate forest (shola) in the Kukkal Forest, Palni hills of the southern Western Ghats, India. Twelve random plots were selected for sampling the vegetation. For phenological studies, twenty-three fleshy fruit trees were identified in the study area and 10 individuals of each species were selected to record the phenological events fortnightly between April 2002 and April 2004. The phenological events were divided into vegetative and reproductive phases. A total of 2279 individuals were inventoried which belong to 83 species, 68 genera and 40 families. About 30% of the species were endemic to the Western Ghats. The most dominant species (〉 1 cm dbh) was Psychotria nilgiriensis var. astephana (Rubiaceae), which accounted for 12% of the total sampled individuals. Lauraceae was the dominant family accounting for 20% of the individuals. Fruiting peak occurred in July 2003 and least in June 2002. During the peak period, fruits of 85 individuals of six species were observed. Syzygium tamilnadensis, Ilex wightiana and Beilschmiedia wightii fruited only once during the two years of study. The number of fruiting species showed no correlation with rainfall (r = 0.26, p = 0.2), while a correlation was found with fruit abundance (r = 0.40, p 〈 0.05). The results indicate that the montane wet temperate forest is unique in their diversity and a conspicuous display in phenology.
基金Foundation for the Support to the Researches in Minas Gerais(FAPEMIG)Council for Scientific and Technological Development(CNPq)under the codes APQ-03501-09(FAPEMIG)and 481363/2009-2(CNPq)。
文摘In tropical montane forests,compositional and structural changes are commonly driven by broad-scale altitudinal variation.Here,given the lack of knowledge on small-scale vegetation changes and temporal dynamics,we address the effects of small-scale variations in soil and altitude on tree community structure,temporal dynamics and phylogenetic diversity in a semi-deciduous tropical forest of the Atlantic Forest Domain,southeastern Brazil.In 2010 and 2015 we sampled thirty plots of 400 m^(2),set up along an altitudinal gradient between 1000 and 1500 m a.s.I..In each plot,we collected soil samples for chemical and textural analyses.We fitted linear models to test the effects of altitude and soil on community dynamics and phylogenetic parameters.Altitude and soil explained the spatial variation in number of individuals and phylogenetic diversity metrics.From lower to higher altitudes,we found decreasing fertility,increasing tree density and decreasing phylogenetic diversity.Altitude significantly influenced the increases in total biomass(from 240.9 to 255.4 t ha^(-1))and individual biomass(from 0.15 to 0.17 t)recorded in the interval.And while community temporal dynamics had rates of 1.96%for mortality,1.02%for recruitment,1.61%for biomass loss and 2.81%for biomass gain,none of them were explained by altitude or soil.Temporal species substitution averaged0.1 in the interval.Altogether,these results suggest that the small-scale variations in altitude and soil likely determine the conditions and resources that drive community assembly and structure,which are expressed by spatial variations along the altitudinal gradient.At the same time,temporal patterns were not influenced by altitude-related environmental variation,resulting in a similar dynamic behaviour across the gradient,suggesting that broad-scale factors may play a more important role than local ones.
文摘The montane closed evergreen forests found at altitudes above 1,800 m in the Western Ghats of India possess a distinct vegetation type and are called shola forests. Despite the fact that these forests are located in relatively inaccessible areas, they are still under anthropogenic pressure leading to continued habitat degradation and loss of biomass and biodiversity. A case study was conducted in Mananvan shola, the largest shola forest in Kerala of Western Ghats, to recognize the impact of disturbance on vegetation structure, composition and regeneration pattern, to identify the socio-economic reasons for disturbance and to evolve strategies for its management. In the disturbed part of the forest, dominance of light demanding species in tree, shrub and herb communities has been recorded. Here even the dominance of exotic species in tree seedling, shrub and herb communities is prominent. Skewed girth class distribution of tree community with poor representation by the individuals of girth class 30.1 to 90.0 cm, is also an indication of the collection of small wood and poles from the forest. The RISQ (Ramakrishnan Index of Stand Quality) in the disturbed area of the forest is above 2.0 as against near to 1.0 in relatively undisturbed forest standssuggesting that the disturbance is intensive and thus natural recovery process would be slow. Socio- economic analysis in villages located near the shola forest revealed the fact that the people depended heavily on this forest for their livelihood. Thus, the crux and the success of future management and conservation strategy depend on how one can reduce the dependency of people on the shola vegetation. Enrichment planting in disturbed parts of shola, enhancement of firewood by raising energy plantations, as well as development of lemongrass and firewood based agroforestry systems and reduction of grazing pressure by developing silvopastoral systems are the major strategies for the conservation of these shola forests.
基金funded by the German Research Foundation(DFG)(Grant No.Br1106/23-1)the Swiss National Science Foundation(SNF)(Grant No.205321L_141186)the Austrian Science Fund(FWF)
文摘Humus forms, especially the occurrence and the thickness of the horizon of humified residues (OH), provide valuable information on site conditions. In mountain forest soils, humus forms show a high spatial variability and data on their spatial patterns is often scarce. Our aim was to test the applicability of various vegetation features as proxy for OH thickness. Subalpine coniferous forests dominated by Picea abies (L.) H. Karst. and Larix decidua Mill. were studied in the Province of Trento, Italian Alps, between ca. 900 and 22o0 m a.s.1. Braun-Blanquet vegetation relevds and OH thickness were recorded at 152 plots. The vegetation parameters, tested for their suitability as indicators of OH thickness, encompassed mean Landolt indicator values of the herb layer (both unweighted and cover-weighted means) as well as parameters of vegetation structure (cover values of plant species groups) calculated from the releves. To our knowledge, the predictive power of Landolt indicator values (LIVs) for humus forms had not been tested before. Correlations between OHthickness and mean LIVs were strongest for the soil reaction value, but indicator values for humus, nutrients, temperature and light were also significantly correlated with OH thickness. Generally, weighting with species cover reduced the indicator quality of mean LIVs for OH thickness. The strongest relationships between OH thickness and vegetation structure existed in the following indicators: the cover of forbs (excluding graminoids and ferns) and the cover of Erieaeeae in the herb layer. Regression models predicting OH thickness based on vegetation structure had almost as much predictive power as models based on LIVs. We conclude that LIVs analysis can produce fairly reliable information regarding the thickness of the OH horizon and, thus, the humus form. If no releve data are readily available, a field estimation of the cover values of certain easily distinguishable herb layer species groups is much faster than a vegetation survey with consecutive indicator value analysis, and might be a feasible way of quickly indicating the humus form.
文摘In a tropical wet montane evergreen forest in the southern peninsular India, the estimated stocking of dead wood is 90 ± 3 stems·ha-1 and the total dead wood volume is 70.7 m3·ha-1. When the logs (downed dead trees more than 10.1 cm in diameter) constitute about 80% of the total deadwood stocking and volume, the rest is by snags (sound and rotting standing dead trees). Since the shola forest trees are characterized by their short stature with low to medium girth, about 89% of the total number of deadwood is of the size ranging from 10.1 cm to 40.0 cm in diameter. The estimated standing dead wood/standing live tree ratio is 0.16 indicating that the forest represents an old stand. Variations observed between logs and snags to change from a given decay class to the higher decay classes in two year period could be attributed to the facts that the logs would be in contact with soil for a relatively longer time and in turn would be in more contact with microorganisms and other decomposing agents.
文摘Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The region, though surprisingly far from the equator and at a relatively high altitude, has a rich tropical flora and a typical tropical rain forest in the lowland areas. Based on physiognomic and ecological characteristics, floristic composition and habitats combined, the primary vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes, i.e. a tropical seasonal rain forest in the lowlands and a tropical montane rain forest at higher elevations. The tropical seasonal rain forest has almost the same forest profile and physiognomic characteristics as equatorial lowland rain forests and is a type of truly tropical rain forest. Because of conspicuous similarity on ecological and floristic characteristics, the tropical rain forest in Xishuangbanna is a type of tropical Asian rain forest. However, since the tropical rain forest of Xishuangbanna occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in having some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll. It is a type of semi-evergreen rain forest at the northern edge of the tropical zone. The tropical montane rain forest occurs at wet montane habitats and is similar to the lower montane rain forest in equatorial Asia in floristic composition and physiognomy. It is a type of lower montane rain forests within the broader category of tropical rain forests. The tropical seasonal moist forest occurs on middle and upper limestone slopes. It is similar to the tropical montane evergreen broad-leaved forest in the region in physiognomy, but differs from the latter in floristic composition. It is a vegetation type on limestone at high elevations. The monsoon forest in Xishuangbanna is a tropical deciduous forest under the influence of a strong monsoon climate and is considered to be a transitional vegetation type between a tropical rain forest and savanna in physiognomy and distribution. The tropical montane evergreen broad-leaved forest is the main montane vegetation type in the region. It is dominated largely by the families Fagaceae, Euphorbiaceae, Theaceae and Lauraceae. It differs from tropical lower montane rain forests in its lack of epiphytes and in having more abundant lianas and plants with compound leaves. It is considered to be a distinct vegetation type from the northern margin of mainland southeastern Asia, controlled by a strong seasonal climate, based on its floristic and physiognomic characteristics.
基金supported by project CGL2013-43440-R,funded by the Ministerio de Economiay Competitividad of Spain
文摘Understanding the effects of elevation and related factors(climate,vegetation) on the physical and chemical soil properties can help to predict changes in response to future climate or afforestation forcings.This work aims to contribute to the knowledge of soil evolution and the classification of forest soils in relation to elevation in the montane stage,with special attention to podzolization and humus forms.The northern flank of the Moncayo Massif(Iberian Range,SW Europe) provides a unique opportunity to study a forest soils catena within a consistent quartzitic parent material over a relatively steep elevation gradient.With increasing elevation,pH,base saturation,exchangeable potassium,and fine silt-sized particles decrease significantly,while organic matter,the C/N ratio,soil aggregate stability,water repellency and coarse sand-sized particles increase significantly.The soil profiles shared a set of properties in all horizons:loamy-skeletal particle-size,extreme acidity(pH-H_2O<5.6) and low base saturation(<50%).The most prevalent soil forming processes in the catena include topsoil organic matter accumulation and even podzolization,which increases with elevation.From the upper to lower landscape positions of wooded montane stage of the Moncayo Massif,mull-moder-mor humus and an UmbrisolCambisol-Podzol soil unit sequences were found.
基金financially supported by Institut Teknologi Bandung through Competitive Annual Research Funding Program year 2009。
文摘Understanding the mechanisms and barriers to the restoration of degraded land,especially post agriculture,will help provide protocols on effective ways of restoration into functional ecosystems.One of the barriers in early stages of forest restoration is the arrival and availability of propagules.Seed rain and factors affecting it(i.e.,distance to the forest edge,species diversity and surrounding vegetation)were measured in a reforested post-agricultural field and in an adjacent secondary forest.Multivariate g lm analysis was used on the seed rain community data and univariate lm analysis on the most abundant seed captured(i.e.,Schima wallichii(DC.)Korth.).After 8 months of seed rain collection,there was a total of 3596 seeds from eight tree species.Seeds were more abundant and more diverse in the secondary forest(74.9%,8 species)compared to the reforested field(24.1%,2 species).There was a limitation on seed dispersal in reforested field from the adjacent forest.The abundance of S.wallichii seeds determined by the dominance of adult trees(136 trees/ha in the forest and 115 trees/ha in the reforested field).Our study suggests,that after 7 years of planting,the reforested field has received limited seed rain and has not yet recovered.
基金supported by the National Key Research and Development Program of China(2016YFC0500302)the National Nature Scientific Foundation Project of China(31200432)
文摘Snow/wind damage is one of the important natural disturbances in forest ecosystems,especially in a montane secondary forest.However,the effects of snow/wind damage remain unclear which affects the management of these forests.Therefore,we investigated the responses of species,individual tree traits and stand structure to snow/wind damage in a montane secondary forest.Results show that,amongst the canopy trees,Betula costata exhibited the most uprooting,bending and overall damage ratio(the number of damaged stems to the total number of stems in a plot); Quercus mongolica showed the highest breakage ratio and Fraxinus mandshurica and Juglans mandshurica the least overall damage ratios.Among the subcanopy trees,Carpinus cordata,Acer mono,Acer tegmentosum and Acer pseudo-sieboldianum showed the least uprooting and breakage,and the most bending damage.A.pseudo-sieboldianum demonstrated the lowest breakage and highest bending damage ratios.Thesefindings indicate that different species have various sensitivities to snow/wind damage.Larger trees(taller,wider crowns) tend to break and become uprooted,while smaller trees are bent or remain undamaged,suggesting that tree characteristics significantly influence the types of damage from snow and wind.Stands of Q.mongolica and B.costata had the highest damage ratios,whereas A.pseudosieboldianum had the lowest snapping ratio.In summary,the severity and type of snow/wind damage are related to individual tree attributes and stand-level characteristics.Therefore,selection of suitable species(e.g.,shorter,smaller with deep root systems,hard wood,bending resistance and compression resistance) and appropriate thinning are recommended for planting in the montane secondary forests.
基金granted by the postdoctoral fellowship CONACYT 2019–2020funded by the DGAPA PAPIIT IN220621 project
文摘Background:Tropical montane cloud forests are one of the most important hotspots on Earth and show presence of relict-endemic and endangered species,representing about 14%of the total tropical forest worldwide.Synchronous seed production or masting in tropical montane cloud tree species is a widespread reproductive strategy of decidu-ous and evergreen broad-leaved tree associations to decrease costs of reproduction and ensure offspring.Masting event maintains a high avian diversity,which can be modified by phenological process(seed production and non-seed production).Methods:The main aim of this study was to assess alpha and beta avian diversity and whether the composition of the trophic guild modifies among phenological processes and between two fragmented relict-endangered Mexican Beech(Fagus grandifolia subsp.mexicana)forests(Medio Monte and El Gosco)in the Mexican state of Hidalgo.In addi-tion,we evaluated beechnut production.Results:We recorded 36 bird species,11 of them included in some conservation risk status,and 5 endemic species.Alpha diversity values were dissimilar in avian richness(q=0)among phenological processes and between frag-mented beech forests.Avian communities among three phenological processes and between fragmented forests were structurally similar,dominated during immature seeds the Brown-backed Solitaire(granivores-insectivores-frugivores);during mature seeds the White-crowned Parrot(Pionus senilis,granivores-frugivores);and the Dwarf Jay(Cyanolyca nana,insectivores)was abundant during low seed quality.The complementarity index was high among phenological processes and low between forests.We found a high bird turnover value between immature seeds—mature seeds and during mature seeds—low seed quality.Furthermore,a similar pattern was recorded between the two study forests.Seed production showed a high number of undamaged beechnuts in Medio Monte,while in El Gosco beechnuts were attacked by insects.Conclusions:Our results reflect that masting phenological process and contrasting study forests'structure influence the shifts in alpha and beta diversity of seed and non-seed bird consumers.Our study reaffirms the importance of continuing studies throughout masting in all the Mexican Beech forests to address regional efforts in preserving the relict-ecological interactions.