This paper presents the application of autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), and Jordan-Elman artificial neural networks (ANN) models in forecasting the monthly streamflow of...This paper presents the application of autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), and Jordan-Elman artificial neural networks (ANN) models in forecasting the monthly streamflow of the Kizil River in Xinjiang, China. Two different types of monthly streamflow data (original and deseasonalized data) were used to develop time series and Jordan-Elman ANN models using previous flow conditions as predictors. The one-month-ahead forecasting performances of all models for the testing period (1998-2005) were compared using the average monthly flow data from the Kalabeili gaging station on the Kizil River. The Jordan-Elman ANN models, using previous flow conditions as inputs, resulted in no significant improvement over time series models in one-month-ahead forecasting. The results suggest that the simple time series models (ARIMA and SARIMA) can be used in one-month-ahead streamflow forecasting at the study site with a simple and explicit model structure and a model performance similar to the Jordan-Elman ANN models.展开更多
Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wi...Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wind power gen eration forecast!ng method based on a climate model and long short-term memory(LSTM)n eural n etwork.A non linear mappi ng model is established between the meteorological elements and wind power monthly utilization hours.After considering the meteorological data(as predicted for the future)and new installed capacity planning,the monthly wind power gen eration forecast results are output.A case study shows the effectiveness of the prediction method.展开更多
Variables fields such as enstrophy, meridional-wind and zonal-wind variables are derived from monthly 500 hPa geopotential height anomalous fields. In this work, we select original predictors from monthly 500-hPa geop...Variables fields such as enstrophy, meridional-wind and zonal-wind variables are derived from monthly 500 hPa geopotential height anomalous fields. In this work, we select original predictors from monthly 500-hPa geopotential height anomalous fields and their variables in June of 1958 - 2001, and determine comprehensive predictors by conducting empirical orthogonal function (EOF) respectively with the original predictors. A downscaling forecast model based on the back propagation (BP) neural network is built by use of the comprehensive predictors to predict the monthly precipitation in June over Guangxi with the monthly dynamic extended range forecast products. For comparison, we also build another BP neural network model with the same predictands by using the former comprehensive predictors selected from 500-hPa geopotential height anomalous fields in May to December of 1957 - 2000 and January to April of 1958 - 2001. The two models are tested and results show that the precision of superposition of the downscaling model is better than that of the one based on former comprehensive predictors, but the prediction accuracy of the downscaling model depends on the output of monthly dynamic extended range forecast.展开更多
A neuroid BP-type three-layer mapping model is used for monthly rainfall forecasting in terms of 1946-1985Naming monthly precipitation records as basic sequences and the model has the form i×j=8×3, K=1; by s...A neuroid BP-type three-layer mapping model is used for monthly rainfall forecasting in terms of 1946-1985Naming monthly precipitation records as basic sequences and the model has the form i×j=8×3, K=1; by steadilymodifying the weighing coefficient, long-range monthly forecasts for January to December, 1986 are constructed and1986 month-to-month predictions are made based on, say, the January measurement for February rainfall and soon, with mean absolute error reaching 6,07 and 5,73 mm, respectively. Also, with a different monthly initial value forJune through September, 1994, neuroid forecasting is done,indicating the same result of the drought in Naming during the summer, an outcome that is in sharp agreement with the observation.展开更多
A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated fo...A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated for the region on the basis of 10-yr (1991-2000) results of the nested-model system, and of the datasets of the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the temperature analysis of the National Meteorological Center (NMC), U.S.A., which are then used for correcting the original forecast by the system for the period 2001-2005. After the assessment of the original and corrected forecasts for monthly precipitation and surface air temperature, it is found that the corrected forecast is apparently better than the original, suggesting that the approach can be applied for improving monthly-scale regional climate dynamical forecast.展开更多
文摘This paper presents the application of autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), and Jordan-Elman artificial neural networks (ANN) models in forecasting the monthly streamflow of the Kizil River in Xinjiang, China. Two different types of monthly streamflow data (original and deseasonalized data) were used to develop time series and Jordan-Elman ANN models using previous flow conditions as predictors. The one-month-ahead forecasting performances of all models for the testing period (1998-2005) were compared using the average monthly flow data from the Kalabeili gaging station on the Kizil River. The Jordan-Elman ANN models, using previous flow conditions as inputs, resulted in no significant improvement over time series models in one-month-ahead forecasting. The results suggest that the simple time series models (ARIMA and SARIMA) can be used in one-month-ahead streamflow forecasting at the study site with a simple and explicit model structure and a model performance similar to the Jordan-Elman ANN models.
基金National Key R&D Program of China"Study on impact assessment of ecological climate and environment on the wind fann and photovoltaic plants"(2018YFB1502800)Science and Technology Project of State Grid Hebei Electric Power Company"Research and application of medium and long-term forecasting technology for regional wind and photovoltaic resources and generation capacity",(5204BB170007)Special Fund Project of Hebei Provincial Government(19214310D).
文摘Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wind power gen eration forecast!ng method based on a climate model and long short-term memory(LSTM)n eural n etwork.A non linear mappi ng model is established between the meteorological elements and wind power monthly utilization hours.After considering the meteorological data(as predicted for the future)and new installed capacity planning,the monthly wind power gen eration forecast results are output.A case study shows the effectiveness of the prediction method.
基金Publicity of New Techniques of China Meteorological Administration (CMATG2005M38)
文摘Variables fields such as enstrophy, meridional-wind and zonal-wind variables are derived from monthly 500 hPa geopotential height anomalous fields. In this work, we select original predictors from monthly 500-hPa geopotential height anomalous fields and their variables in June of 1958 - 2001, and determine comprehensive predictors by conducting empirical orthogonal function (EOF) respectively with the original predictors. A downscaling forecast model based on the back propagation (BP) neural network is built by use of the comprehensive predictors to predict the monthly precipitation in June over Guangxi with the monthly dynamic extended range forecast products. For comparison, we also build another BP neural network model with the same predictands by using the former comprehensive predictors selected from 500-hPa geopotential height anomalous fields in May to December of 1957 - 2000 and January to April of 1958 - 2001. The two models are tested and results show that the precision of superposition of the downscaling model is better than that of the one based on former comprehensive predictors, but the prediction accuracy of the downscaling model depends on the output of monthly dynamic extended range forecast.
文摘A neuroid BP-type three-layer mapping model is used for monthly rainfall forecasting in terms of 1946-1985Naming monthly precipitation records as basic sequences and the model has the form i×j=8×3, K=1; by steadilymodifying the weighing coefficient, long-range monthly forecasts for January to December, 1986 are constructed and1986 month-to-month predictions are made based on, say, the January measurement for February rainfall and soon, with mean absolute error reaching 6,07 and 5,73 mm, respectively. Also, with a different monthly initial value forJune through September, 1994, neuroid forecasting is done,indicating the same result of the drought in Naming during the summer, an outcome that is in sharp agreement with the observation.
基金National Natural Science Foundation of China (40875067, 40675040)Knowledge Innovation Program of the Chinese Academy of Sciences (IAP09306)National Basic Research Program of China. (2006CB400505)
文摘A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated for the region on the basis of 10-yr (1991-2000) results of the nested-model system, and of the datasets of the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the temperature analysis of the National Meteorological Center (NMC), U.S.A., which are then used for correcting the original forecast by the system for the period 2001-2005. After the assessment of the original and corrected forecasts for monthly precipitation and surface air temperature, it is found that the corrected forecast is apparently better than the original, suggesting that the approach can be applied for improving monthly-scale regional climate dynamical forecast.