针对滚动轴承故障诊断过程中样本处理、故障识别等技术问题,提出一种基于Morlet小波和分类回归树(Classification and Regression Tree,CART)的滚动轴承故障诊断方法。首先,利用Morlet小波分析方法和移动窗方法对轴承振动信号进行样本...针对滚动轴承故障诊断过程中样本处理、故障识别等技术问题,提出一种基于Morlet小波和分类回归树(Classification and Regression Tree,CART)的滚动轴承故障诊断方法。首先,利用Morlet小波分析方法和移动窗方法对轴承振动信号进行样本处理。其次,对提取的短样本进行变分模态分解与特征提取,完成训练集和测试集的构建。然后,使用训练集训练CART决策树分类模型,同时引入随机搜索和K折交叉验证用于模型关键参数优化,以获取理想的轴承故障分类模型。测试集验证结果表明,该方法不但能实现多种轴承故障的有效诊断、在含噪测试集中表现良好,而且单个样本的数据长度和采样时长的缩短效果明显。展开更多
文摘针对滚动轴承故障诊断过程中样本处理、故障识别等技术问题,提出一种基于Morlet小波和分类回归树(Classification and Regression Tree,CART)的滚动轴承故障诊断方法。首先,利用Morlet小波分析方法和移动窗方法对轴承振动信号进行样本处理。其次,对提取的短样本进行变分模态分解与特征提取,完成训练集和测试集的构建。然后,使用训练集训练CART决策树分类模型,同时引入随机搜索和K折交叉验证用于模型关键参数优化,以获取理想的轴承故障分类模型。测试集验证结果表明,该方法不但能实现多种轴承故障的有效诊断、在含噪测试集中表现良好,而且单个样本的数据长度和采样时长的缩短效果明显。