期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of cerebral lymphatic block on cerebral morphology and cortical evoked potential in rats
1
作者 Zuoli Xia1, Baoliang Sun2, Mingfeng Yang1, Dongmei Hu2, Tong Zhao2, Jingzhong Niu2 1Institute of Brain Microcirculation, Taishan Medical College, Taian 271000, Shandong Province, China 2Department of Neurology, Affiliated Hospital of Taishan Medical College, Taian 271000, Shandong Province, China 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第7期657-660,共4页
BACKGROUND: It has been shown that although brain does not contain lining endothelial lymphatic vessel, it has lymphatic drain. Anterior lymphatic system of lymphatic vessel in brain tissue plays a key role in introdu... BACKGROUND: It has been shown that although brain does not contain lining endothelial lymphatic vessel, it has lymphatic drain. Anterior lymphatic system of lymphatic vessel in brain tissue plays a key role in introducing brain interstitial fluid to lymphatic system; however, the significance of lymphatic drain and the effect on cerebral edema remains unclear. OBJECTIVE: To investigate the effect of cerebral lymphatic block on cerebral morphology and cortical evoked potential in rats. DESIGN: Randomized controlled animal study. SETTING: Institute of Cerebral Microcirculation of Taishan Medical College and Department of Neurology of Affiliated Hospital. MATERIALS: A total of 63 healthy adult male Wistar rats weighing 300-350 g were selected in this study. Forty-seven rats were used for the morphological observation induced by lymphatic drain and randomly divided into three groups: general observation group (n =12), light microscopic observation group (n =21) and electronic microscopic observation group (n =14). The rats in each group were divided into cerebral lymphatic block subgroup and sham-operation control subgroup. Sixteen rats were used for observing the effect of cerebral lymphatic block on cortical evoked potential, in which the animals were randomly divided into sham-operation group (n =6) and cerebral lymphatic block group (n =10). METHODS: The experiment was carried out in the Institute of Cerebral Microcirculation of Taishan Medical College from January to August 2003. Rats in cerebral lymphatic block group were anesthetized and separated bilateral superficial and deep cervical lymph nodes under sterile condition. Superior and inferior boarders of lymph nodes were ligated the inputting and outputting channels, respectively, and then lymph node was removed so as to establish cerebral lymphatic drain disorder models. Rats in sham-operation control group were not ligated the lymphatic vessel and removed lymph nodes, and other operations were as the same as those in cerebral lymphatic block group. Morphological changes of the brain and alterations of latency of cortical evoked potential were detected on the 1st, 2nd, 3rd, 5th, 7th, 10th and 15th days after operation under general, light microscope and electronic microscope observations. MAIN OUTCOME MEASURES: ① Cerebral morphological changes; ② latent changes of cortical evoked potential. RESULTS: A total of 63 rats were involved in the final analysis. ① Cerebral morphological changes: General observation showed that, for cerebral lymphatic block rats, the surface of brain was pale and full, and cerebral gyrus was wide and flattened sulci after cerebral lymphatic block; and cerebral tissue space prolongation, increased interstitial fluid, neuronal degeneration and necrosis, diffused phagocytes and satellitosis were observed under light microscope. Neuronal swell and necrosis, glial cell swell, apparent subcellular changes such as mitochondron were observed under electronic microscope. ② Latent changes of cortical evoked potential: As compared with sham-operation control group, latency of cortical evoked potential in cerebral lymphatic blockage group prolonged on the 5th day and 7th day after cerebral lymphatic block [(6.28±0.23), (6.97±0.35) ms; (6.23±0.22), (7.12±0.20) ms; P < 0.01]. CONCLUSION: ① Cerebral lymphatic block plays an important role in cerebral morphology, and may result in abnormality of sensitive impulse conduction and prolong latency of cortical evoked potential. ② Examination of cortical evoked potential is easy and convenient, so it is regarded as a key index for lymphatic disturbed cerebral injury. 展开更多
关键词 Effect of cerebral lymphatic block on cerebral morphology and cortical evoked potential in rats
下载PDF
Control on the Morphology of ABA Amphiphilic Triblock Copolymer Micelles in Dioxane/Water Mixture Solvent 被引量:1
2
作者 Yuan Gan Zhi-Da Wang +3 位作者 Zhuo-Xin Lu Yan Shi Hong-Yi Tan Chang-Feng Yan 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第6期728-735,共8页
This work offers a typical understanding of the factors that govern the nanostructures of poly(4-vinyl pyridine)-b-polystyrene-bpoly(4-vinyl pyridine)(P4 VP-b-PS-b-P4 VP) block copolymers(BCs) in dioxane/water... This work offers a typical understanding of the factors that govern the nanostructures of poly(4-vinyl pyridine)-b-polystyrene-bpoly(4-vinyl pyridine)(P4 VP-b-PS-b-P4 VP) block copolymers(BCs) in dioxane/water, in which water is a selective solvent for the P4 VP block. It is achieved through an investigation of the amphiphilic triblock copolymer micelles by variation of three different factors, including water content(above CWC but under the immobile concentration), temperature(ranging from 20 °C to 80 °C), and copolymer composition(low and high PS block length). Transition of bead-like micelles to vesicles is observed with the increase of water content due to the increase of interfacial energy between the copolymer and the solvent. Effect of temperature superposed on that of water content results in various morphologies, such as beads, fibers, rods, capsules, toroids, lamellae, and vesicles. The interfacial tension between the BC and the solvent increases with the increase of water content but decreases with the increase of temperature, indicating that the micellar morphologies are resulted from the competitive interplay between the temperature and the water content and always change in a direction that decreases the interfacial energy. Based on the micellar structures obtained in this work and the effects of temperature superposed on water concentration, a diagram of phase evolution of different micellar morphologies is illustrated here, covering the temperature range from 20 °C to 80 °C and the water content changing from 20 vol% to 35 vol%. For the investigation of BC composition, morphological transition of vesicle-to-fiber, for high PS length, is observed as compared with bead-to-capsule for low PS length, as the temperature changes from 20 °C to 80 °C. Our research complements the protocols to control over the morphologies and the phase diagram describing P4 VP-b-PS-b-P4 VP micellar nanostructures in aqueous solution. 展开更多
关键词 Micelles morphological control Self-assembly Block copolymer
原文传递
Getting to the Bottom Morphology of Block Copolymer Thin Films 被引量:1
3
作者 Wen-jin Fan Guo-qiang Fan +1 位作者 张晓华 杨朝晖 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2016年第1期88-93,共6页
We demonstrate a general approach for attaining the bottom morphology of block copolymer(BCP) thin films. In our former measurements on PS-b-PMMA films, surface morphology maps of the BCP films revealed distinct ord... We demonstrate a general approach for attaining the bottom morphology of block copolymer(BCP) thin films. In our former measurements on PS-b-PMMA films, surface morphology maps of the BCP films revealed distinct ordering regimes where the cylinders orient predominantly perpendicular or parallel to the interface and an ‘intermediate' regime where these morphologies coexist. However, this earlier work did not explore the bottom morphology of BCP thin films. In this study, we investigated the block copolymer morphology near the solid substrate in the cast block copolymer film having a perpendicular cylinder morphology on the surface. 展开更多
关键词 Block copolymer Thin film Morphology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部