期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Morphology effect of zirconia support on the catalytic performance of supported Ni catalysts for dry reforming of methane 被引量:5
1
作者 李伟作 赵忠奎 +1 位作者 焦艳华 王桂茹 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第12期2122-2133,共12页
An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydr... An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydrothermal method and used as the support for a Ni catalyst for the dry reforming of methane (DRM) with CO2. ZrO2-ipch is a much better support than ZrO2-cs and the traditional ZrO2 irregular particles made by a simple precipitation method (ZrO2-ip). The supported Ni catalyst on ZrO2-ipch (Ni/ZrO2-ipch) exhibited outstanding catalytic activity and coke-resistant stability compared to the ones on ZrO2-cs (Ni/ZrO2-cs) and ZrO2-ip (Ni/ZrO2-ip). Ni/ZrO2-ip exhibited the worst catalytic performance. The origin of the significantly enhanced catalytic performance was revealed by characterization including XRD, N2 adsorption measurement (BET), TEM, H2-TPR, CO chemisorption, CO2-TPD, XPS and TGA. The superior catalytic activity of Ni/ZrO2-ipch to Ni/ZrO2-cs or Ni/ZrO2-ip was ascribed to a higher Ni dispersion, increased reducibility, enhanced oxygen mo- bility, and more basic sites with a higher strength, which were due to the unique hierarchically structural morphology of the ZrO2-ipch support. Ni/ZrO2-ipch exhibited better stability for the DRM reaction than Ni/ZrO2-ip, which was ascribed to its higher resistance to Ni sintering due to a strengthened metal-support interaction and the confinement effect of the mesopores and coke deposition resistance. The higher coking resistance of Ni/ZrO2-ipch for the DRM reaction in comparison with Ni/ZrOz-ip orignated from the coke-removalabitity of the higher amount of lattice oxygen and more basic sites, confirmed by XPS and CO2-TPD analysis, and the stabilized Ni on the Ni/ZrO2-ipch catalyst by the confinement effect of the mesopores of the hierarchical ZrO2-ipch sup- port. The superior catalytic performance and coking resistance of the Ni/ZrO2-ipch catalyst makes it a promising candidate for synthesis gas production from the DRM reaction. 展开更多
关键词 Ni-based catalystZrO2 supportHierarchical structure Morphology effect Dry reforming of methane Synthesis gas Coke resistance
下载PDF
Burn-resistant behavior and mechanism of Ti14 alloy 被引量:3
2
作者 Yong-nan Chen Ya-zhou Huo +3 位作者 Xu-ding Song Zhao-zhao Bi Yang Gao Yong-qing Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第2期215-221,共7页
The direct-current simulation burning method was used to investigate the burn-resistant behavior of Ti14 titanium alloy.The results show that Ti14 alloy exhibits a better burn resistance than TC4 alloy(Ti-6A1-4V).Cu... The direct-current simulation burning method was used to investigate the burn-resistant behavior of Ti14 titanium alloy.The results show that Ti14 alloy exhibits a better burn resistance than TC4 alloy(Ti-6A1-4V).Cu is observed to preferentially migrate to the surface of Ti14 alloy during the burning reaction,and the burned product contains Cu,Cu2O,and TiO2.An oxide layer mainly comprising loose TiO2 is observed beneath the burned product.Meanwhile,Ti2Cu precipitates at grain boundaries near the interface of the oxide layer,preventing the contact between O2 and Ti and forming a rapid diffusion layer near the matrix interface.Consequently,a multiple-layer structure with a Cu-enriched layer(burned product)/Cu-lean layer(oxide layer)/Cu-enriched layer(rapid diffusion layer) configuration is formed in the burn heat-affected zone of Ti14 alloy;this multiple-layer structure is beneficial for preventing O2 diffusion.Furthermore,although A1 can migrate to form A12O3 on the surface of TC4 alloy,the burn-resistant ability of TC4 is unimproved because the Al2O3 is discontinuous and not present in sufficient quantity. 展开更多
关键词 titanium alloys interface morphology burn resistance
下载PDF
Effects of Annealing Temperature on the Structural,Optical,and Electrical Properties of ZnO Thin Films Grown on n-Si<100>Substrates by the Sol–Gel Spin Coating Method 被引量:4
3
作者 Aniruddh Bahadur Yadav Amritanshu Pandey S.Jit 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第4期682-688,共7页
The effects of annealing temperature on the sol–gel-derived ZnO thin films deposited on n-Sh100 i substrates by sol–gel spin coating method have been studied in this paper.The structural,optical,and electrical prope... The effects of annealing temperature on the sol–gel-derived ZnO thin films deposited on n-Sh100 i substrates by sol–gel spin coating method have been studied in this paper.The structural,optical,and electrical properties of ZnO thin films annealed at 450,550,and 650 °C in the Ar gas atmosphere have been investigated in a systematic way.The XRD analysis shows a polycrystalline nature of the films at all three annealing temperatures.Further,the crystallite size is observed to be increased with the annealing temperature,whereas the positions of various peaks in the XRD spectra are found to be red-shifted with the temperature.The surface morphology studied through the scanning electron microscopy measurements shows a uniform distribution of ZnO nanoparticles over the entire Si substrates of enhanced grain sizes with the annealing temperature.Optical properties investigated by photoluminescence spectroscopy shows an optical band gap varying in the range of 3.28–3.15 eV as annealing temperature is increased from 450 to 650 °C,respectively.The fourpoint probe measurement shows a decrease in resistivity from 2:1 10 2to 8:1 10 4X cm with the increased temperature from 450 to 650 °C.The study could be useful for studying the sol–gel-derived ZnO thin film-based devices for various electronic,optoelectronic,and gas sensing applications. 展开更多
关键词 Nanocrystalline ZnO thin film Sol–gel Annealing Surface morphology Photoluminescence(PL) Resistivity Grain size
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部