High-efficiency photocatalytic hydrogen evolution(PHE)relies on the development of inexpensive,stable,and efficient photocatalysts.Cadmium sulfide(CdS),as a typical binary metal sulfide,has attracted considerable rese...High-efficiency photocatalytic hydrogen evolution(PHE)relies on the development of inexpensive,stable,and efficient photocatalysts.Cadmium sulfide(CdS),as a typical binary metal sulfide,has attracted considerable research attention due to its negative conduction band position,narrow band gap for visible-light response,and strong driving force for PHE.However,the construction of CdSbased photocatalysts and the PHE rate still require improvement for practical applications.In this review,recent advances in CdS-based photocatalysts for PHE via water splitting are systematically summarized.First,the semiconductor properties of CdS,including the crystal and band structures,are briefly introduced.Afterward,the fundamental mechanisms of PHE using semiconductor photocatalysts via water splitting are discussed.Subsequently,the photoactivity of bare CdS with different morphologies and structures,CdS with cocatalyst loading,and CdS-based heterojunction photocatalysts are reviewed and discussed in detail.Finally,the challenges and prospects for exploring advanced CdS-based photocatalysts are provided.展开更多
Alloy-type metals/alloys hold the promise of increasing the energy density of metal-ion batteries(MIBs)because of their theoretical high gravimetrical capacities.Semimetals and semimetal-analogs are typical alloy-type...Alloy-type metals/alloys hold the promise of increasing the energy density of metal-ion batteries(MIBs)because of their theoretical high gravimetrical capacities.Semimetals and semimetal-analogs are typical alloy-type anodes.Currently,the large-scale extraction of semimetals(Si,Ge)and semimetal-analogs(Sb,Bi,Sn)by traditional metallurgical routes highly relies on using reducing agents(e.g.,carbon,hydrogen,reactive metals),which consumes a large number of fossil fuels and produces greenhouse gas emissions.In addition,the common metallurgical methods for extracting semimetals involve relatively high operating temperatures and therefore produce bulk metal ingots solidified from the liquid metals.However,the commonly used electrode materials in batteries are fine powders.Thus,directly producing semimetal powders would be more energy efficient.In addition,semimetals are good candidates to host alkali/alkaline-earth ions through the alloying process because the electronegativity of semimetals is high.Therefore,preparing semimetal powders via an environment-sound manner is of great interest to provide sustainable anode materials for MIBs while reducing the ecological footprint.Low-cost and high-output capacity anode powder materials,as well as straightforward and environmental-benign synthetic methods,play key roles in enabling the energy conversion and storage technologies for real applications of MIBs.Electrochemical technologies offer new strategies to extract semimetals using electrons as the reducing agent that comes from renewable energies.Besides,the morphologies and structures of the electrolytic products can be rationally tailored by tuning the electrode potentials,electrolytes,and operating temperatures.In this regard,using the one-step green electrochemical method to prepare high-capacity and cheaper alloy-type metalloids for MIB anodes can fulfill the requirements for developing MIBs.This review critically overviews recent developments and advances in the electrochemical extraction of semimetals(Si,Ge)and semimetal-analogs(Sb,Bi,Sn)for MIBs,including basic electrochemical principles,thermodynamic analysis,manufacture strategies and applications in lithium-ion batteries(LIBs),sodium-ion batteries(SIBs),potassium-ion batteries(PIBs),magnesium-ion batteries(Mg-ion batteries),and liquid metal batteries(LMBs).It also presents challenges and prospects of employing electrochemical approaches for preparing alloy-type anode materials directly from inexpensive ore-originated feedstocks.展开更多
基金the Natural Science Foundation of Hainan Province(grant no.521RC495)the National Natural Science Foundation of China(grant nos.22109034,22109035,52164028,and 62105083)+1 种基金the Foundation of State Key Laboratory of Marine Resource Utilization in South China Sea(Hainan University,grant no.MRUKF2021029)the Start-up Research Foundation of Hainan University(grant nos.KYQD(ZR)-20008,20082,20083,20084,21065,21124,and 21125).
文摘High-efficiency photocatalytic hydrogen evolution(PHE)relies on the development of inexpensive,stable,and efficient photocatalysts.Cadmium sulfide(CdS),as a typical binary metal sulfide,has attracted considerable research attention due to its negative conduction band position,narrow band gap for visible-light response,and strong driving force for PHE.However,the construction of CdSbased photocatalysts and the PHE rate still require improvement for practical applications.In this review,recent advances in CdS-based photocatalysts for PHE via water splitting are systematically summarized.First,the semiconductor properties of CdS,including the crystal and band structures,are briefly introduced.Afterward,the fundamental mechanisms of PHE using semiconductor photocatalysts via water splitting are discussed.Subsequently,the photoactivity of bare CdS with different morphologies and structures,CdS with cocatalyst loading,and CdS-based heterojunction photocatalysts are reviewed and discussed in detail.Finally,the challenges and prospects for exploring advanced CdS-based photocatalysts are provided.
基金the National Natural Science Foundation of China(No.51704060)the Fundamental Research Funds for the Central Universities(No.N172505002)the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities(No.B16009)。
文摘Alloy-type metals/alloys hold the promise of increasing the energy density of metal-ion batteries(MIBs)because of their theoretical high gravimetrical capacities.Semimetals and semimetal-analogs are typical alloy-type anodes.Currently,the large-scale extraction of semimetals(Si,Ge)and semimetal-analogs(Sb,Bi,Sn)by traditional metallurgical routes highly relies on using reducing agents(e.g.,carbon,hydrogen,reactive metals),which consumes a large number of fossil fuels and produces greenhouse gas emissions.In addition,the common metallurgical methods for extracting semimetals involve relatively high operating temperatures and therefore produce bulk metal ingots solidified from the liquid metals.However,the commonly used electrode materials in batteries are fine powders.Thus,directly producing semimetal powders would be more energy efficient.In addition,semimetals are good candidates to host alkali/alkaline-earth ions through the alloying process because the electronegativity of semimetals is high.Therefore,preparing semimetal powders via an environment-sound manner is of great interest to provide sustainable anode materials for MIBs while reducing the ecological footprint.Low-cost and high-output capacity anode powder materials,as well as straightforward and environmental-benign synthetic methods,play key roles in enabling the energy conversion and storage technologies for real applications of MIBs.Electrochemical technologies offer new strategies to extract semimetals using electrons as the reducing agent that comes from renewable energies.Besides,the morphologies and structures of the electrolytic products can be rationally tailored by tuning the electrode potentials,electrolytes,and operating temperatures.In this regard,using the one-step green electrochemical method to prepare high-capacity and cheaper alloy-type metalloids for MIB anodes can fulfill the requirements for developing MIBs.This review critically overviews recent developments and advances in the electrochemical extraction of semimetals(Si,Ge)and semimetal-analogs(Sb,Bi,Sn)for MIBs,including basic electrochemical principles,thermodynamic analysis,manufacture strategies and applications in lithium-ion batteries(LIBs),sodium-ion batteries(SIBs),potassium-ion batteries(PIBs),magnesium-ion batteries(Mg-ion batteries),and liquid metal batteries(LMBs).It also presents challenges and prospects of employing electrochemical approaches for preparing alloy-type anode materials directly from inexpensive ore-originated feedstocks.