The microstructure, chemical composition and morphology evolution of icosahedral quasicrystalline phase of Mg67.4Zn28.9Y3.7 ternary alloy were investigated in detail at different pouring temperatures by X-ray diffract...The microstructure, chemical composition and morphology evolution of icosahedral quasicrystalline phase of Mg67.4Zn28.9Y3.7 ternary alloy were investigated in detail at different pouring temperatures by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrum (EDS). Low interracial energy favors the formation of l-phase. The experimental results show that the primary l-phase reveals petal-shaped with five and six branches, where each branch has facetted growth morphology with the size ranging from 50 to 100μm. As the temperature decreases, the polygon-shaped l-phase forms, attributed to the decomposition of branch of petal-shaped l-phase, and then it grows bigger and some of the fine polygons join together to form large polygons. Besides these, (α-Mg+l-phase) eutectic structures disappear and the relative amount of Mg7Zn3 phase increases as the pouring temperature decreases. The chemical composition and morphology evolution of l-phase were also discussed.展开更多
The morphology evolution of AI9(Mn,Ni)2 eutectic phase in AI-4Ni-2Mn alloy at 350 .C was examined. Two kinds of morphology evolution trends of AIg(Mn, Ni)2 eutectic phase were observed by using scanning electron m...The morphology evolution of AI9(Mn,Ni)2 eutectic phase in AI-4Ni-2Mn alloy at 350 .C was examined. Two kinds of morphology evolution trends of AIg(Mn, Ni)2 eutectic phase were observed by using scanning electron microscopy and transmission electron microscopy. The ribbon-like AIg(Mn, Ni)2 eutectic phase taking up a small portion of the eutectic structures gradually changes from ribbon-like morphology to rod-like during the heat treatment. The rod-like AIg(Mn, Ni)2 eutectics, primary eutectic structure in the alloy, become unstable at the transverse sub- boundaries of the eutectic rod when the samples are heat treated at 350 .C, and then split up into short rods with the extension of heat treatment time. Also, the Vickers microhardness test was used to characterize the change of local mechanical properties. The hardness test results indicate that local morphology evolution of eutectic phase has no obvious effect on the local mechanical properties of the alloy. The microhardness of the eutectic area increases slightly when the heat treatment time is extended to 192 h or 360 h.展开更多
Quenching experiments were performed at different cooling rates under non-directional solidification by differential thermal analysis, and the morphologic variation of primary phase, phase transition temperature and h...Quenching experiments were performed at different cooling rates under non-directional solidification by differential thermal analysis, and the morphologic variation of primary phase, phase transition temperature and hardness change at the same quenching temperature were investigated. The experimental results show that, with the gradual decrease of the cooling rate from 25 K/min, the morphology of ferrite starts to transform experiencing the dendrite, radial pattern, Widmanstatten-like and wire-net. Sample starts to present the Widmanstatten-like microstructure at 10 K/min which does not exist at higher or lower cooling rates, and this microstructure is detrimental to the mechanical property. Except 10 K/min, the hardness decreases with decreasing cooling rate.展开更多
The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses...The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses, the surface morphology of titanium alloy in a spatial scale of μm exhibits an obvious smoothening trend. The mechanism of this phenomenon is explained by the mass transfer caused by the surface tension of molten metal. Hydrodynamic simulation with a combination of the finite element method and the level set method reveals that the change in curvature on the molten surface leads to uneven distribution of surface tension. Mass transfer is caused by the relief of surface tension, and meanwhile a flattening trend in the surface morphology evolution is achieved.展开更多
A series of AIN nanostructures were synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport(PVT) process. Energy dispersive X-ray spectroscopy(EDX), X-ray diffraction(XRD), X-Ray photoel...A series of AIN nanostructures were synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport(PVT) process. Energy dispersive X-ray spectroscopy(EDX), X-ray diffraction(XRD), X-Ray photoelectron spectroscopy(XPS),high resolution transmission electron microscopy(HRTEM) detection show that high quality AIN nanowires were prepared. Nanostructures including nanorings, nanosprings, nanohelices, chainlike nanowires, six-fold symmetric nanostructure and rod-like structure were successfully obtained by controlling the growth duration and temperature. The morphology evolution was attributed to electrostatic polar charge model and the crystalline lattice structure of AIN.展开更多
A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the pol...A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the polygon-like morphology,another pattern of the icosahedral quasicrystal,has also been found in the Y-rich Mg-Zn-Y ternary alloys. The latter morphology results from the evolution of the former one. The growth mechanism of the petal-like morphology of the icosahedral quasicrystal was also discussed. Alloying composition,i.e.,Y element content,is a major factor inducing the morphology evolution of the icosahedral quasicrystal.展开更多
Sm-Co nanoparticles (NPs) are promising candidates for preparing superstable magnets and exchange-coupled nanocomposite magnets with unprecedented magnetic properties.However,the morphology evolution of the NPs remain...Sm-Co nanoparticles (NPs) are promising candidates for preparing superstable magnets and exchange-coupled nanocomposite magnets with unprecedented magnetic properties.However,the morphology evolution of the NPs remains unclear.Here,single crystalline SmCox(x=4.07,4.79,6.94,and 8.61) NPs with dimensions below the critical size of a single magnetic domain were synthesized.These NPs consist of Sm_(2)Co_(7),SmCo_(5),and Sm2Co17phases with divergent typical morphologies.An evolution model for the different morphological characteristics was proposed based on phase-structure changes and surface-energy calculations using the density functional theory.The results show that these SmCo_(4.79) NPs can be well aligned along the easy magnetization axis and exhibit an ultrahigh coercivity of 5.7 T,thus enabling to advance the control of NP morphology and to facilitate their use in superstable or nanocomposite magnets.展开更多
(γ’+β)two-phase Ni-Al is a promising high-temperature protective coating material used on Ni-base superalloys since it has good interfacial compatibility with superalloys due to the low Al content compared to singl...(γ’+β)two-phase Ni-Al is a promising high-temperature protective coating material used on Ni-base superalloys since it has good interfacial compatibility with superalloys due to the low Al content compared to single-phaseβ-NiA l.In this paper,we aim to improve the oxidation resistance,whereby Ni-34Al-0.1Dy,a(γ’+β)two-phase Ni-Al alloy,was treated by laser shock processing(LSP)and the oxidation behavior at 1150℃ was investigated.The results showed that after oxidation,Al_(2)O_(3)scale formed on the originalβphase of the untreated alloy with a small grain size(200-800 nm),while for the LSP-treated samples,the scale grown on the originalβphase was dominantly composed of larger Al_(2)O_(3)grains with a size of 2-3μm.The distinction was attributed to the promotion ofθ-Al_(2)O_(3)toα-Al_(2)O_(3)transformation induced by the LSP,because the dislocation density,as well as surface roughness,were increased during LSP treatment which can provide heterogeneous nucleation sites forα-Al_(2)O_(3).In addition,the larger-size Al_(2)O_(3)particles,derived from the direct conversion of needle-likeθ-Al_(2)O_(3)in the initial oxidation stage,could rapidly overspread the wholeβphase surface thus reducing the scale growth rate.展开更多
In this study, the maleic anhydride (MAH) and styrene (St) dual monomers grafted polypropylene (PP) and poly[styrene-b- (ethylene-co-butylene)-b-styrene] (SEBS), i.e. PP-g-(MAH-co-St) and SEBS-g-(MAH-co-S...In this study, the maleic anhydride (MAH) and styrene (St) dual monomers grafted polypropylene (PP) and poly[styrene-b- (ethylene-co-butylene)-b-styrene] (SEBS), i.e. PP-g-(MAH-co-St) and SEBS-g-(MAH-co-St) are prepared as multi-phase compatibilizers and used to compatibilize the PA6/PS/PP/SEBS (70/10/10/10) model quaternary blends. Both PS and SEBS are encapsulated by the hard shell of PP-g-(MAH-co-St) in the dispersed domains (about 2 μm) of the PA6/PS/PP-g-(MAH-co-St)/SEBS (70/10/10/10) quaternary blend. In contrast, inside the dispersed domains (about 1 μm) of the PA6/PS/PP/SEBS-g-(MAH-co-St) (70/10/10/10) quaternary blend, the soft SEBS-g-(MAH-co-St) encapsulates both the hard PS and PP phases and separates them. With increasing the content of the compatibilizers equally, the morphology of the PA6/PS/(PP+PP-g-(MAH-co-St))/(SEBS+SEBS-g-(MAH-co-St)) (70/10/10/10) quaternary blends evolves from the soft (SEBS+SEBS-g-(MAH-co-St)) encapsulating PS and partially encapsulating PP (about 1 μm), then to PS exclusively encapsulated by the soft SEBS-g-(MAH-co-St) and then separated by PP-g-(MAH-co-St) inside the smaller domains (about 0.6 μm). This morphology evolution has been well predicted by spreading coefficients and explained by the reaction between the matrix PA6 and the compatibilizers. The quaternary blends compatibilized by more compatibilizers exhibit stronger hierarchical interfacial adhesions and smaller dispersed domain, which results in the further improved mechanical properties. Compared to the uncompatibilized blend, the blend with both 10 wt% PP-g-(MAH-co-St) and 10 wt% SEBS-g-(MAH-co-St) has the best mechanical properties with the stress at break, strain at break and impact failure energy improved significantly by 97%, 71% and 261%, respectively. There is a strong correlation between the structure and property in the blends.展开更多
High-performance perovskite solar cells(PVSCs)with low energy consumption and green processing are highly desired,but constrained by the difficulty in morphology control and the poor understanding on morphology evolut...High-performance perovskite solar cells(PVSCs)with low energy consumption and green processing are highly desired,but constrained by the difficulty in morphology control and the poor understanding on morphology evolution mechanisms.To address this issue,here we studied the effect of antisolvents on the perovskite film formation.We found that both the antisolvents and the perovskite composition affect the perovskite film morphology greatly via influencing the intermediate phase,and different perovskite compositions require different antisolvents to reach the optimal morphology.This provides the opportunity to achieve high-performance PVSCs with green antisolvent,that is,isopropanol(iPA)by changing the perovskite compositions,and leads to a powerconversionefficiency(PCE)of 21.50% for PVSCs based on MA_(0.6)FA_(0.4)PbI_(3).Further,we fabricated“fully green”PVSCs with all layers prepared by green sol-vents,and the optimal PCE can reach 19%,which represents the highest among PVSCs with full-green processing.This work provides insight into the perovskite morphology evolution and paves the way toward“green”processing PVSCs.展开更多
Surfactant-directed block copolymer(BCP) particles have gained intensive attention owing to their attractive morphologies and ordered domains. However, their controllable fabrication suffers several limitations includ...Surfactant-directed block copolymer(BCP) particles have gained intensive attention owing to their attractive morphologies and ordered domains. However, their controllable fabrication suffers several limitations including complex design and synthesis of multiple surfactant systems, limited choices of block copolymers, and time-consuming post-processes, etc. Herein, a surfactant size-dependent phase separation route is proposed to precisely manipulate the architectures of the anionic block copolymer particles in the binary co-assembly system of BCP and surfactants. In the system of polystyrene block polyacrylic acid (PS-b-PAA) and quaternary ammonium surfactants, it is verified that facile control on the ordered phase separation structures and morphologies of BCP particles can be achieved via simply varying the alkyl lengths of the surfactants. The cationic surfactants are demonstrated participating in the fabrication of the internal structures of BCP particles. Especially, it is found that the cationic surfactants are integrate into the anionic polyacrylic acid(PAA) domain of BCP particles of PS-b-PAA to influence the volume fraction of PAA blocks, so that varied architectures of BCP particles are constructed. Based on these understandings, spherical or ellipsoidal BCP particles are obtained as expected, as well as their precisely inorganic mesoporous silica replicas through the block copolymer nanoparticle replicating route. More interestingly, the ellipsoidal mesoporous silica exhibits higher cellular internalization capability due to its lower energy expenditure during the internalization process, which presents promising potentials in biomedical applications, especially for high-efficient drug delivery systems. These findings may provide valuable insights into the confinement assembly of anionic block copolymers and the creation of special nanocarriers for high-efficiency biomacromolecule delivery in the biomedical community.展开更多
The paper explores applications of genetic programming to co-evolution of morphology and low-level control. In most reasonably difficult tasks, facilitation provided by modularity has proved to be vital for successful...The paper explores applications of genetic programming to co-evolution of morphology and low-level control. In most reasonably difficult tasks, facilitation provided by modularity has proved to be vital for successful application of genetic programming. However, the need for sharing data among nodes in the syntactic tree becomes especially acute when evolving modular programs. It has been shown before that it may be beneficial that modules themselves be node-attached. The paper presents extensions to standard genetic programming (the so-called contexts and context blocks) that allow for straight-forward storage, retrieval, transfer, and modification of data stored in the context of a syntactic tree, and shared by multiple nodes. Framework is thus provided for both: data sharing and node-attached modules. Finally, using context blocks, a genetic algorithm has been embedded within genetic programming to evolve values of constants. In genetic programming evolution of constants has been a long-standing problem. The paper shows how context blocks can be utilized to provide a more granular and flexible approach to their evolution. As shown in previous works, node-attached modules perform favorably when compared with existing approaches. Concerning evolution of context block constants, it is shown here that they too perform favorably when compared with ephemeral constants.展开更多
Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interact...Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers.展开更多
Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning el...Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed.展开更多
The evolution of self organized Ge quantum dots structure is investigated by scanning tunneling microscopy and atomic force microscopy during annealing treatment up to 700℃ in an ultra high vacuum(UHV) system.When t...The evolution of self organized Ge quantum dots structure is investigated by scanning tunneling microscopy and atomic force microscopy during annealing treatment up to 700℃ in an ultra high vacuum(UHV) system.When the sample temperature rises to 630℃,a great amount of new dots emerge on the wetting layer,which are believed to be incoherent islands compared with the dislocation free coherent islands formed during molecular beam epitaxy growth.展开更多
The tidal flats of the Wanggang area, on the Jiangsu coast, represent the largest continuously distributed coastal wetland in terms of area coverage in China, and the dynamics of tidal flat accretion and erosion is hi...The tidal flats of the Wanggang area, on the Jiangsu coast, represent the largest continuously distributed coastal wetland in terms of area coverage in China, and the dynamics of tidal flat accretion and erosion is highly complicated. The cord-grass Spartina alterniflora, which was introduced artificially into the Jiangsu coast, has significant influences on the regional tidal flat evolution in terms of deposition rate, spacial sediment distribution patterns and tidal creek morphology. On the basis of the data set of bed elevation and accumulation rate for different periods of time, the applicability of the Pethick - Allen model to the Jiangsu tidal salt marshes is discussed. In addition, caesium-137 dating was carried out for sediment samples collected from the salt marsh of the Wangang area. In combination with the caesium-137 analysis and the data collected from literature, the Pethick - Allen model was used to derive the accumulation rate in the Wanggang tidal flat for the various periods. The results show that the pattern of tidal flat accretion has been modified, due to more rapid accretion following the iatroduction of S. alterniflora to the region. Surficial sediment samples were collected from representative profiles and analyzed for grain size with a laser particle analyzer. The result shows that fine-grained sediment has been trapped by the plant, with most of the sediment deposited on the Suaeda salsa and Spartina angelica flats being derived from drainage creeks rather than the from gently sloping tidal flats. Remote sensing analysis and in situ observations indicate that the creeks formed in the S. alterniflora flat have a relatively small ratio of width to depth, a relatively high density, and are more stable than the other tidal flat creek systems in the study area.展开更多
The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,sc...The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,scanning electron microscope and differential thermal analyzer.The results show that as the holding temperature decreases,the morphologies of the primary iron-rich phase in matrix change from star-like to polygonal,and the number of the primary phases gradually decreases and disappears at 615°C.Finally,the Chinese script phases with small size,high compact and uniform distribution are obtained.In contrast,the primary iron-rich phases in slag transform into a coarser polygonal shape with lower roundness,and some of them have hollow structures.Furthermore,the area fraction of intermetallics and Fe content in the matrix decrease gradually due to the formation and growth of sludge and subsequent natural sedimentation during melt holding.With the decrease of holding temperature,the main factors hindering the settlement of the primary phases are morphology,size,and density in turn.展开更多
Owing to the intensive human activities, the Modaomen Estuary has been significantly modified since 1950s, which has resulted in considerable changes of hydrodynamics and morphodynamics in the area. In this paper, the...Owing to the intensive human activities, the Modaomen Estuary has been significantly modified since 1950s, which has resulted in considerable changes of hydrodynamics and morphodynamics in the area. In this paper, the effects of the anthropogenic activities on the hydrodynamics and morphological evolution in the estuary at different stages are systematically assessed based on the detailed bathymetric data and field survey. The results show that the human activities have caused the channelization of the enclosed sea area in the Modamen Estuary;fast seaward movement of the mouth bar with high siltation;expansion of the channel volume due to channel deepening. The paper also highlights the main hydrodynamic changes in the estuary, including the rise of the water level;the distinguishing changes of tidal range before and after the 1990s (decrease and increase respectively); as well as the increase of the divided flow ratio. It is found that reclamation is the main factor promoting the transition of nature of the estuary from runoff dominant to runoff and wave dominant, and sand mining activities are mainly to strengthen the tidal dynamic and to low the water level. The results provide useful guidance for better planning of the future developments in the estuary and further research in the area.展开更多
Solid-liquid phase conversion between various sulfur species in lithium-sulfur(Li-S)batteries is a fundamental reaction of the sulfur cathode.Disclosing the morphological evolution of solid sulfur species upon cycling...Solid-liquid phase conversion between various sulfur species in lithium-sulfur(Li-S)batteries is a fundamental reaction of the sulfur cathode.Disclosing the morphological evolution of solid sulfur species upon cycling is of great significance to achieving high energy densities.However,an in-depth investigation of the internal reaction is still lacking.In this work,the evolution process of solid sulfur species on carbon substrates is systematically studied by using an operando light microscope combined with in situ electrochemical impedance spectra technology.The observation of phenomena such as bulk solid sulfur species can form and dissolve independently of the conductive substrates and the transformation of supercooled liquid sulfur to crystalline sulfur.Based on the phenomena mentioned above,a possible mechanism was proposed in which the dissolution reaction of solid sulfur species is a spatially free reaction that involves isotropic physical dissolution,diffusion of molecules,and finally the electrochemical reaction.Correspondingly,the formation of solid sulfur species tends to be a form of crystallization in a saturated solution rather than electrodeposition,as is commonly believed.Our findings offer new insights into the reaction of sulfur cathodes and provide new opportunities to design advanced sulfur cathodes for Li-S batteries.展开更多
A large sand bar develops in the inner Qiantang River Estuary,China.It is a unique sedimentary system,elongating landwards by about 130 km.Based on long-term series of bathymetric data in each April,July,and November ...A large sand bar develops in the inner Qiantang River Estuary,China.It is a unique sedimentary system,elongating landwards by about 130 km.Based on long-term series of bathymetric data in each April,July,and November since the 1960s,this study investigated the morphological behavior of this bar under natural conditions and the influence of a large-scale river narrowing project(LRNP)implemented in the last decades.The results show that three timescales,namely the seasonal,interannual and decadal timescales,can be distinguished for the sand bar evolution.The first two are related to the seasonal and interannual variations of river discharge.During high discharge seasons or years,erosion took place at the upper reach and sedimentation at the lower reach.Consequently,the bar apex shifted seaward.The opposite development took place during low discharge seasons or years.The decadal timescale is related to LRNP.Due to the implementation of LRNP,the upper reach has experienced apparent erosion and currently a new equilibrium state has been reached;whereas the lower reach has been accumulated seriously and the accumulation still continues.Nonlinear relationships for how the bar apex location and elevation depend on the river discharge over various stages of LRNP have been established.Compared with the earlier stage of LRNP,the bar apex at present has shifted seaward by about 12 km and lowered by about 1 m.The sand bar movement has significant feedback on the hydrographic conditions along the estuary and has practical implications for coastal management.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.50571081)the Aeronautical Science Foundation of China (Grant No.04G53042)
文摘The microstructure, chemical composition and morphology evolution of icosahedral quasicrystalline phase of Mg67.4Zn28.9Y3.7 ternary alloy were investigated in detail at different pouring temperatures by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrum (EDS). Low interracial energy favors the formation of l-phase. The experimental results show that the primary l-phase reveals petal-shaped with five and six branches, where each branch has facetted growth morphology with the size ranging from 50 to 100μm. As the temperature decreases, the polygon-shaped l-phase forms, attributed to the decomposition of branch of petal-shaped l-phase, and then it grows bigger and some of the fine polygons join together to form large polygons. Besides these, (α-Mg+l-phase) eutectic structures disappear and the relative amount of Mg7Zn3 phase increases as the pouring temperature decreases. The chemical composition and morphology evolution of l-phase were also discussed.
文摘The morphology evolution of AI9(Mn,Ni)2 eutectic phase in AI-4Ni-2Mn alloy at 350 .C was examined. Two kinds of morphology evolution trends of AIg(Mn, Ni)2 eutectic phase were observed by using scanning electron microscopy and transmission electron microscopy. The ribbon-like AIg(Mn, Ni)2 eutectic phase taking up a small portion of the eutectic structures gradually changes from ribbon-like morphology to rod-like during the heat treatment. The rod-like AIg(Mn, Ni)2 eutectics, primary eutectic structure in the alloy, become unstable at the transverse sub- boundaries of the eutectic rod when the samples are heat treated at 350 .C, and then split up into short rods with the extension of heat treatment time. Also, the Vickers microhardness test was used to characterize the change of local mechanical properties. The hardness test results indicate that local morphology evolution of eutectic phase has no obvious effect on the local mechanical properties of the alloy. The microhardness of the eutectic area increases slightly when the heat treatment time is extended to 192 h or 360 h.
基金Funded by the National Natural Science Foundation of China(No.2010DFB70630)
文摘Quenching experiments were performed at different cooling rates under non-directional solidification by differential thermal analysis, and the morphologic variation of primary phase, phase transition temperature and hardness change at the same quenching temperature were investigated. The experimental results show that, with the gradual decrease of the cooling rate from 25 K/min, the morphology of ferrite starts to transform experiencing the dendrite, radial pattern, Widmanstatten-like and wire-net. Sample starts to present the Widmanstatten-like microstructure at 10 K/min which does not exist at higher or lower cooling rates, and this microstructure is detrimental to the mechanical property. Except 10 K/min, the hardness decreases with decreasing cooling rate.
基金Supported by the National Natural Science Foundation of China under Grant No 1175012the China Postdoctoral Science Foundation under Grant No 2016M600897the National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No 2013ZX04001-071
文摘The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses, the surface morphology of titanium alloy in a spatial scale of μm exhibits an obvious smoothening trend. The mechanism of this phenomenon is explained by the mass transfer caused by the surface tension of molten metal. Hydrodynamic simulation with a combination of the finite element method and the level set method reveals that the change in curvature on the molten surface leads to uneven distribution of surface tension. Mass transfer is caused by the relief of surface tension, and meanwhile a flattening trend in the surface morphology evolution is achieved.
基金Project supported by the Natural Science Foundation of Tianjin,China(No.15JCQNJC03700)the National Natural Science Foundation of China(Nos.51702297)
文摘A series of AIN nanostructures were synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport(PVT) process. Energy dispersive X-ray spectroscopy(EDX), X-ray diffraction(XRD), X-Ray photoelectron spectroscopy(XPS),high resolution transmission electron microscopy(HRTEM) detection show that high quality AIN nanowires were prepared. Nanostructures including nanorings, nanosprings, nanohelices, chainlike nanowires, six-fold symmetric nanostructure and rod-like structure were successfully obtained by controlling the growth duration and temperature. The morphology evolution was attributed to electrostatic polar charge model and the crystalline lattice structure of AIN.
基金the National Natural Science Foundation of China (No. 50571081)the Aviation Foundation of China (No. 04G53024).
文摘A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the polygon-like morphology,another pattern of the icosahedral quasicrystal,has also been found in the Y-rich Mg-Zn-Y ternary alloys. The latter morphology results from the evolution of the former one. The growth mechanism of the petal-like morphology of the icosahedral quasicrystal was also discussed. Alloying composition,i.e.,Y element content,is a major factor inducing the morphology evolution of the icosahedral quasicrystal.
基金supported by the National Natural Science Foundation of China (Grant Nos.52031001,and 91960101)。
文摘Sm-Co nanoparticles (NPs) are promising candidates for preparing superstable magnets and exchange-coupled nanocomposite magnets with unprecedented magnetic properties.However,the morphology evolution of the NPs remains unclear.Here,single crystalline SmCox(x=4.07,4.79,6.94,and 8.61) NPs with dimensions below the critical size of a single magnetic domain were synthesized.These NPs consist of Sm_(2)Co_(7),SmCo_(5),and Sm2Co17phases with divergent typical morphologies.An evolution model for the different morphological characteristics was proposed based on phase-structure changes and surface-energy calculations using the density functional theory.The results show that these SmCo_(4.79) NPs can be well aligned along the easy magnetization axis and exhibit an ultrahigh coercivity of 5.7 T,thus enabling to advance the control of NP morphology and to facilitate their use in superstable or nanocomposite magnets.
基金financially supported by the National Natural Science Foundation of China(Grant No.51901011)the National Science and Technology Major Project(Grant Nos.2017-Ⅵ-0002-0072 and 2017-VII-0007-0100)+1 种基金the Fundamental Research Funds for Central Universities(Grant No.YWF-21-BJ-J-1034)the support from Youth Talent Support Program of Beihang University。
文摘(γ’+β)two-phase Ni-Al is a promising high-temperature protective coating material used on Ni-base superalloys since it has good interfacial compatibility with superalloys due to the low Al content compared to single-phaseβ-NiA l.In this paper,we aim to improve the oxidation resistance,whereby Ni-34Al-0.1Dy,a(γ’+β)two-phase Ni-Al alloy,was treated by laser shock processing(LSP)and the oxidation behavior at 1150℃ was investigated.The results showed that after oxidation,Al_(2)O_(3)scale formed on the originalβphase of the untreated alloy with a small grain size(200-800 nm),while for the LSP-treated samples,the scale grown on the originalβphase was dominantly composed of larger Al_(2)O_(3)grains with a size of 2-3μm.The distinction was attributed to the promotion ofθ-Al_(2)O_(3)toα-Al_(2)O_(3)transformation induced by the LSP,because the dislocation density,as well as surface roughness,were increased during LSP treatment which can provide heterogeneous nucleation sites forα-Al_(2)O_(3).In addition,the larger-size Al_(2)O_(3)particles,derived from the direct conversion of needle-likeθ-Al_(2)O_(3)in the initial oxidation stage,could rapidly overspread the wholeβphase surface thus reducing the scale growth rate.
基金financially supported by the National Natural Science Foundation of China (No. 51633003)State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (No. OIC-201601006)
文摘In this study, the maleic anhydride (MAH) and styrene (St) dual monomers grafted polypropylene (PP) and poly[styrene-b- (ethylene-co-butylene)-b-styrene] (SEBS), i.e. PP-g-(MAH-co-St) and SEBS-g-(MAH-co-St) are prepared as multi-phase compatibilizers and used to compatibilize the PA6/PS/PP/SEBS (70/10/10/10) model quaternary blends. Both PS and SEBS are encapsulated by the hard shell of PP-g-(MAH-co-St) in the dispersed domains (about 2 μm) of the PA6/PS/PP-g-(MAH-co-St)/SEBS (70/10/10/10) quaternary blend. In contrast, inside the dispersed domains (about 1 μm) of the PA6/PS/PP/SEBS-g-(MAH-co-St) (70/10/10/10) quaternary blend, the soft SEBS-g-(MAH-co-St) encapsulates both the hard PS and PP phases and separates them. With increasing the content of the compatibilizers equally, the morphology of the PA6/PS/(PP+PP-g-(MAH-co-St))/(SEBS+SEBS-g-(MAH-co-St)) (70/10/10/10) quaternary blends evolves from the soft (SEBS+SEBS-g-(MAH-co-St)) encapsulating PS and partially encapsulating PP (about 1 μm), then to PS exclusively encapsulated by the soft SEBS-g-(MAH-co-St) and then separated by PP-g-(MAH-co-St) inside the smaller domains (about 0.6 μm). This morphology evolution has been well predicted by spreading coefficients and explained by the reaction between the matrix PA6 and the compatibilizers. The quaternary blends compatibilized by more compatibilizers exhibit stronger hierarchical interfacial adhesions and smaller dispersed domain, which results in the further improved mechanical properties. Compared to the uncompatibilized blend, the blend with both 10 wt% PP-g-(MAH-co-St) and 10 wt% SEBS-g-(MAH-co-St) has the best mechanical properties with the stress at break, strain at break and impact failure energy improved significantly by 97%, 71% and 261%, respectively. There is a strong correlation between the structure and property in the blends.
基金This work was supported by the National Natural Sci-ence Foundation of China(Grant Nos.51961145301,51620105006,and 61721005)the National Key Research and Development Program of China(No.2019YFA0705900).
文摘High-performance perovskite solar cells(PVSCs)with low energy consumption and green processing are highly desired,but constrained by the difficulty in morphology control and the poor understanding on morphology evolution mechanisms.To address this issue,here we studied the effect of antisolvents on the perovskite film formation.We found that both the antisolvents and the perovskite composition affect the perovskite film morphology greatly via influencing the intermediate phase,and different perovskite compositions require different antisolvents to reach the optimal morphology.This provides the opportunity to achieve high-performance PVSCs with green antisolvent,that is,isopropanol(iPA)by changing the perovskite compositions,and leads to a powerconversionefficiency(PCE)of 21.50% for PVSCs based on MA_(0.6)FA_(0.4)PbI_(3).Further,we fabricated“fully green”PVSCs with all layers prepared by green sol-vents,and the optimal PCE can reach 19%,which represents the highest among PVSCs with full-green processing.This work provides insight into the perovskite morphology evolution and paves the way toward“green”processing PVSCs.
基金This work was supported by the National Natural Science Foundation of China (Nos.51621002,51972112,22005096)the Basic Research Program of Shanghai Municipal Government,China(Nos.21JC1406000,19JC1411700)+1 种基金the Shanghai Sailing Program,China(No.20YF1410100)the Leading Talents in Shanghai in 2018 of China and the 111 Project of China(No.B14018).
文摘Surfactant-directed block copolymer(BCP) particles have gained intensive attention owing to their attractive morphologies and ordered domains. However, their controllable fabrication suffers several limitations including complex design and synthesis of multiple surfactant systems, limited choices of block copolymers, and time-consuming post-processes, etc. Herein, a surfactant size-dependent phase separation route is proposed to precisely manipulate the architectures of the anionic block copolymer particles in the binary co-assembly system of BCP and surfactants. In the system of polystyrene block polyacrylic acid (PS-b-PAA) and quaternary ammonium surfactants, it is verified that facile control on the ordered phase separation structures and morphologies of BCP particles can be achieved via simply varying the alkyl lengths of the surfactants. The cationic surfactants are demonstrated participating in the fabrication of the internal structures of BCP particles. Especially, it is found that the cationic surfactants are integrate into the anionic polyacrylic acid(PAA) domain of BCP particles of PS-b-PAA to influence the volume fraction of PAA blocks, so that varied architectures of BCP particles are constructed. Based on these understandings, spherical or ellipsoidal BCP particles are obtained as expected, as well as their precisely inorganic mesoporous silica replicas through the block copolymer nanoparticle replicating route. More interestingly, the ellipsoidal mesoporous silica exhibits higher cellular internalization capability due to its lower energy expenditure during the internalization process, which presents promising potentials in biomedical applications, especially for high-efficient drug delivery systems. These findings may provide valuable insights into the confinement assembly of anionic block copolymers and the creation of special nanocarriers for high-efficiency biomacromolecule delivery in the biomedical community.
文摘The paper explores applications of genetic programming to co-evolution of morphology and low-level control. In most reasonably difficult tasks, facilitation provided by modularity has proved to be vital for successful application of genetic programming. However, the need for sharing data among nodes in the syntactic tree becomes especially acute when evolving modular programs. It has been shown before that it may be beneficial that modules themselves be node-attached. The paper presents extensions to standard genetic programming (the so-called contexts and context blocks) that allow for straight-forward storage, retrieval, transfer, and modification of data stored in the context of a syntactic tree, and shared by multiple nodes. Framework is thus provided for both: data sharing and node-attached modules. Finally, using context blocks, a genetic algorithm has been embedded within genetic programming to evolve values of constants. In genetic programming evolution of constants has been a long-standing problem. The paper shows how context blocks can be utilized to provide a more granular and flexible approach to their evolution. As shown in previous works, node-attached modules perform favorably when compared with existing approaches. Concerning evolution of context block constants, it is shown here that they too perform favorably when compared with ephemeral constants.
基金China Postdoctoral Science Foundation(2020M681125)National Natural Science Foundation of China(32272254,31901618)Collaborative Innovation Center of Fragrance Flavour and Cosmetics.
文摘Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers.
基金Project(50571003) supported by the National Natural Science Foundation of China
文摘Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed.
文摘The evolution of self organized Ge quantum dots structure is investigated by scanning tunneling microscopy and atomic force microscopy during annealing treatment up to 700℃ in an ultra high vacuum(UHV) system.When the sample temperature rises to 630℃,a great amount of new dots emerge on the wetting layer,which are believed to be incoherent islands compared with the dislocation free coherent islands formed during molecular beam epitaxy growth.
基金supported financially by the National Natural Science Foundation of China under contract Nos 40231010 and 40476041the Marine Science Youth Fund of State 0ceanic Administration of China under contract No.2006312.
文摘The tidal flats of the Wanggang area, on the Jiangsu coast, represent the largest continuously distributed coastal wetland in terms of area coverage in China, and the dynamics of tidal flat accretion and erosion is highly complicated. The cord-grass Spartina alterniflora, which was introduced artificially into the Jiangsu coast, has significant influences on the regional tidal flat evolution in terms of deposition rate, spacial sediment distribution patterns and tidal creek morphology. On the basis of the data set of bed elevation and accumulation rate for different periods of time, the applicability of the Pethick - Allen model to the Jiangsu tidal salt marshes is discussed. In addition, caesium-137 dating was carried out for sediment samples collected from the salt marsh of the Wangang area. In combination with the caesium-137 analysis and the data collected from literature, the Pethick - Allen model was used to derive the accumulation rate in the Wanggang tidal flat for the various periods. The results show that the pattern of tidal flat accretion has been modified, due to more rapid accretion following the iatroduction of S. alterniflora to the region. Surficial sediment samples were collected from representative profiles and analyzed for grain size with a laser particle analyzer. The result shows that fine-grained sediment has been trapped by the plant, with most of the sediment deposited on the Suaeda salsa and Spartina angelica flats being derived from drainage creeks rather than the from gently sloping tidal flats. Remote sensing analysis and in situ observations indicate that the creeks formed in the S. alterniflora flat have a relatively small ratio of width to depth, a relatively high density, and are more stable than the other tidal flat creek systems in the study area.
基金Project(2017GDASCX-0117)supported by the Guangdong Academy of Sciences,ChinaProject(201806010126)supported by the Pearl River S&T Nova Program of Guangzhou,China+3 种基金Projects(2017A050503004,2017A07071029)supported by the Guangdong Provincial Program of Science and Technology,ChinaProject(18126010)supported by the Guangxi Autonomous Regional Program of Science and Technology,ChinaProject(201802030012)supported by the Guangzhou Municipal Science and Technology Bureau,ChinaProject(2017A0109005)supported by the Sihui Plan Project of Science and Technology,China.
文摘The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,scanning electron microscope and differential thermal analyzer.The results show that as the holding temperature decreases,the morphologies of the primary iron-rich phase in matrix change from star-like to polygonal,and the number of the primary phases gradually decreases and disappears at 615°C.Finally,the Chinese script phases with small size,high compact and uniform distribution are obtained.In contrast,the primary iron-rich phases in slag transform into a coarser polygonal shape with lower roundness,and some of them have hollow structures.Furthermore,the area fraction of intermetallics and Fe content in the matrix decrease gradually due to the formation and growth of sludge and subsequent natural sedimentation during melt holding.With the decrease of holding temperature,the main factors hindering the settlement of the primary phases are morphology,size,and density in turn.
基金funded by the Program of International S&T Cooperation(Grant No.2010DFA24470)the Non-profitable Special Scientific Research Project from the Ministry of Water Resources,China(Grant No.200901034–01)
文摘Owing to the intensive human activities, the Modaomen Estuary has been significantly modified since 1950s, which has resulted in considerable changes of hydrodynamics and morphodynamics in the area. In this paper, the effects of the anthropogenic activities on the hydrodynamics and morphological evolution in the estuary at different stages are systematically assessed based on the detailed bathymetric data and field survey. The results show that the human activities have caused the channelization of the enclosed sea area in the Modamen Estuary;fast seaward movement of the mouth bar with high siltation;expansion of the channel volume due to channel deepening. The paper also highlights the main hydrodynamic changes in the estuary, including the rise of the water level;the distinguishing changes of tidal range before and after the 1990s (decrease and increase respectively); as well as the increase of the divided flow ratio. It is found that reclamation is the main factor promoting the transition of nature of the estuary from runoff dominant to runoff and wave dominant, and sand mining activities are mainly to strengthen the tidal dynamic and to low the water level. The results provide useful guidance for better planning of the future developments in the estuary and further research in the area.
基金the financial support from The National Key Research and Development Program of China(2018YFB0104200)。
文摘Solid-liquid phase conversion between various sulfur species in lithium-sulfur(Li-S)batteries is a fundamental reaction of the sulfur cathode.Disclosing the morphological evolution of solid sulfur species upon cycling is of great significance to achieving high energy densities.However,an in-depth investigation of the internal reaction is still lacking.In this work,the evolution process of solid sulfur species on carbon substrates is systematically studied by using an operando light microscope combined with in situ electrochemical impedance spectra technology.The observation of phenomena such as bulk solid sulfur species can form and dissolve independently of the conductive substrates and the transformation of supercooled liquid sulfur to crystalline sulfur.Based on the phenomena mentioned above,a possible mechanism was proposed in which the dissolution reaction of solid sulfur species is a spatially free reaction that involves isotropic physical dissolution,diffusion of molecules,and finally the electrochemical reaction.Correspondingly,the formation of solid sulfur species tends to be a form of crystallization in a saturated solution rather than electrodeposition,as is commonly believed.Our findings offer new insights into the reaction of sulfur cathodes and provide new opportunities to design advanced sulfur cathodes for Li-S batteries.
基金The National Natural Science Foundation of China under contract Nos 41676085 and 42176170the Zhejiang Provincial Hydraulic Science and Technology Planning Project under contract No.RB2033the Zhejiang Provincial Natural Science Foundation of China under contract No.LY16D060004.
文摘A large sand bar develops in the inner Qiantang River Estuary,China.It is a unique sedimentary system,elongating landwards by about 130 km.Based on long-term series of bathymetric data in each April,July,and November since the 1960s,this study investigated the morphological behavior of this bar under natural conditions and the influence of a large-scale river narrowing project(LRNP)implemented in the last decades.The results show that three timescales,namely the seasonal,interannual and decadal timescales,can be distinguished for the sand bar evolution.The first two are related to the seasonal and interannual variations of river discharge.During high discharge seasons or years,erosion took place at the upper reach and sedimentation at the lower reach.Consequently,the bar apex shifted seaward.The opposite development took place during low discharge seasons or years.The decadal timescale is related to LRNP.Due to the implementation of LRNP,the upper reach has experienced apparent erosion and currently a new equilibrium state has been reached;whereas the lower reach has been accumulated seriously and the accumulation still continues.Nonlinear relationships for how the bar apex location and elevation depend on the river discharge over various stages of LRNP have been established.Compared with the earlier stage of LRNP,the bar apex at present has shifted seaward by about 12 km and lowered by about 1 m.The sand bar movement has significant feedback on the hydrographic conditions along the estuary and has practical implications for coastal management.