期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Molten salt synthesis,morphology modulation,and lithiation mechanism of high entropy oxide for robust lithium storage
1
作者 Xuefeng Liu Honghong Wang +5 位作者 Long Dong Kezhuo Li Haijun Zhang Quanli Jia Shaowei Zhang Wen Lei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期536-545,I0011,共11页
High entropy oxides(HEOs)with ideal element tunability and enticing entropy-driven stability have exhibited unprecedented application potential in electrochemical lithium storage.However,the general control of dimensi... High entropy oxides(HEOs)with ideal element tunability and enticing entropy-driven stability have exhibited unprecedented application potential in electrochemical lithium storage.However,the general control of dimension and morphology remains a major challenge.Here,scalable HEO morphology modulation is implemented through a salt-assisted strategy,which is achieved by regulating the solubility of reactants and the selective adsorption of salt ions on specific crystal planes.The electrochemical properties,lithiation mechanism,and structure evolution of composition-and morphology-dependent HEO anode are examined in detail.More importantly,the potential advantages of HEOs as electrode materials are evaluated from both theoretical and experimental aspects.Benefiting from the high oxygen vacancy concentration,narrow band gap,and structure durability induced by the multi-element synergy,HEO anode delivers desirable reversible capacity and reaction kinetics.In particular,Mg is evidenced to serve as a structural sustainer that significantly inhibits the volume expansion and retains the rock salt lattice.These new perspectives are expected to open a window of opportunity to compositionally/morphologi cally engineer high-performance HEO electrodes. 展开更多
关键词 High-entropy oxide Lithium-ion battery anode Molten salt morphology modulation Structure stability
下载PDF
Surface pattern based on an azobenzene-containing copolymer thin film and its light-driven morphology modulation
2
作者 Lei ZHANG Li WANG Hao-jie YU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第7期504-513,共10页
A type of azobenzene-containing block copolymer polymethyl methacrylate-b-poly (n-butylmethacrylate-co-6-(4-(phenylazo) benzoate) hexyl methacrylate) (PMMA-b-(PnBMA-co-PAzoMA)) was synthesized by the atom transfer rad... A type of azobenzene-containing block copolymer polymethyl methacrylate-b-poly (n-butylmethacrylate-co-6-(4-(phenylazo) benzoate) hexyl methacrylate) (PMMA-b-(PnBMA-co-PAzoMA)) was synthesized by the atom transfer radical polymerization (ATRP). Macroinitiator polymethyl methacrylate (PMMA) was prepared by ATRP and used to initiate the copolymerization of monomer n-butyl methacrylate (nBMA) and azobenzene-based methacrylate monomer (AzoMA). Herein, three block copolymers with different molecular weights and block volume fractions were obtained and spin-coated on a silicon substrate or quartz plate before annealing at 180℃ for 14 h. The surface morphologies in these annealed copolymer films were observed by atomic force microscopy (AFM). Bicontinuous stripe or island patterns with different sizes were formed dependent on the film thickness. These ordered patterns are considered to be formed arising from the dewetting process of the surface layer in the copolymer film. Photoisomerization of azobenzene units in the copolymer films changed the dewetting behaviors of the surface layer of the thin film. Therefore, some copolymer annealed films showed a reversible morphology conversion between bicontinuous stripe and island structure when exposed to UV light and upon being stored in the dark. It was found that the composition of the block copolymer had obvious influences on the photoinduced morphology conversion behaviors in these copolymer thin films. When the volumes of PnBMA and PAzoMA phases in the block copolymer were large enough, the surface morphology could be modulated by UV light irradiation and storage in the dark. This work proposes a new possibility for photoinduced control and design of the dewetting processes of thin films using a linear block copolymer. 展开更多
关键词 Dewetting behavior Photoinduced morphology modulation Atom transfer radical polymerization (ATRP) Block copolymer
原文传递
Synergistic electronic and morphological modulation on ternary Co_(1-x)V_(x)P nanoneedle arrays for hydrogen evolution reaction with large current density 被引量:3
3
作者 Mingyang Yang Chaoqun Shang +8 位作者 Feifei Li Chen Liu Zhenyu Wang Shuai Gu Di Liu Lujie Cao Junjun Zhang Zhouguang Lu Hui Pan 《Science China Materials》 SCIE EI CAS CSCD 2021年第4期880-891,共12页
It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been consi... It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been considered as an effective method to improve the catalytic performance,due to the enhanced intrinsic activity and enlarged accessible active sites.Herein,we present novel ternary Co_(1-x)V_(x)P nanoneedle arrays with modulated electronic and morphological structures as an electrocatalyst for highly efficient HER in alkaline solution.The NF@Co1-xVxP catalyst shows a remarkable catalytic ability with low overpotentials of 46 and 226 mV at current densities of 10 and 400 mA cm^(-2),respectively,as well as a small Tafel slope and superior stability.Combining the experimental and computational study,the excellent catalytic performance was attributed to the improved physical and chemical properties(conductivity and surface activity),large active surface area,and fast reaction kinetics.Furthermore,the assembled Co–V based electrolyzer(NF@Co_(1-x)V_(x)–HNNs(+)||NF@Co_(1-x)V_(x)P(-))delivers small full-cell voltages of 1.58,1.75,and 1.92 V at 10,100,and 300 mA cm^(-2),respectively.Our findings provide a systematic understanding on the V–incorporation strategy to promote highly efficient ternary electrocatalysts via synergistic control of morphology and electronic structures. 展开更多
关键词 modulated morphology and electronic structures ternary Co1-xVxP hydrogen evolution reaction overall water splitting
原文传递
Exploiting the donor-acceptor-additive interaction’s morphological effect on the performance of organic solar cells
4
作者 Lu Chen Ruijie Ma +10 位作者 Jicheng Yi Top Archie Dela Peña Hongxiang Li Qi Wei Cenqi Yan Jiaying Wu Mingjie Li Pei Cheng He Yan Guangye Zhang Gang Li 《Aggregate》 EI CAS 2024年第2期316-327,共12页
Organic solar cells(OSCs)have demonstrated over 19%power conversion efficiency(PCE)with the help of material innovation and device optimization.Co-working with newly designed materials,traditional solvent additives,1-... Organic solar cells(OSCs)have demonstrated over 19%power conversion efficiency(PCE)with the help of material innovation and device optimization.Co-working with newly designed materials,traditional solvent additives,1-chloronaphthalene(CN),and 1,8-diodooctane(DIO)are still powerful in morphology modulation towards satisfying efficiencies.Here,we chose recently reported high-performance polymer donors(PM6&D18-Fu)and small molecular acceptors(Y6&L8-BO)as active layer materials and processed them by different conditions(CN or DIO or none).Based on corresponding 12 groups of device results,and their film morphology characterizations(both ex-situ and in-situ ones),the property-performance relationships are revealed case by case.It is thereby supposed to be taken as a successful attempt to demonstrate the importance and complexity of donor-acceptoradditive interaction,since the device performance and physics analyses are also tightly combined with morphology variation.Furthermore,ternary blend construction for PCE improvement provides an approaching 19%level and showcases the potential of understanding-guided-optimization(UGO)in the future of OSCs. 展开更多
关键词 material combinations morphology modulation organic solar cells power conversion efficiency solvent additives
原文传递
Advances in organic micro/nanocrystals with tunable physicochemical properties 被引量:1
5
作者 Yingxin Ma Zhi-Zhou Li +3 位作者 Hongtao Lin Shuhai Chen Shuping Zhuo Xue-Dong Wang 《Science China Materials》 SCIE EI CAS CSCD 2022年第3期593-611,共19页
Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the rece... Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the recent advances for organic micro/nanocrystals from the perspective of molecule aggregation mode,morphology modulation,and optical property modulation are reviewed.The stacking mode and the intermolecular interaction depend on the molecular structure,which eventually determines the morphology of organic micro/nanocrystals.The morphologies of the organic micro/nanocrystals make the aggregates exhibit photon confinement or light-guiding properties as organic miniaturized optoelectronic devices.In this review,we conclude with a summary and put forward our perspective on the current challenges and the future development of morphology and optical tunable direction for the organic micro/nanocrystals. 展开更多
关键词 organic micro/nanostructures organic semiconductor aggregation mode morphology modulation excitedstate process
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部