Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff...Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.展开更多
The magnitude-frequency(MF) relationship of debris flows is the basis for engineering designs and risk quantification. However, because of the lack of debris flow monitoring data, research progress in this area has be...The magnitude-frequency(MF) relationship of debris flows is the basis for engineering designs and risk quantification. However, because of the lack of debris flow monitoring data, research progress in this area has been relatively slow. The MF relationship of debris flows in Jiangjia Gully, Yunnan Province was evaluated based on a regression analysis of 178 debris flow events that occurred from 1987-2004. The magnitude-cumulative frequency(MCF) relationship of the debris flows in the Jiangjia Gully is consistent with the linear logarithmic transformation function. Moreover, observed data for debris flows in Hunshui Gully of Yunnan Province and Huoshao Gully, Liuwan Gully, and Niwan Gully of Gansu Province were used to verify the function. The results showed that the MCF relationship of highfrequency debris flows is consistent with the power law equation, although the regression coefficients in the equation are considerably different. Further analysis showed a strong correlation between the differences in the constants and the drainage area and daily maximum precipitation.展开更多
The Jiangjia Gully, which is located in Dongchuan District, Yunnan Province, China, is a watershed prone to debris flows and has long-term recorded data of debris-flow occurrence. However, the initiation mechanism has...The Jiangjia Gully, which is located in Dongchuan District, Yunnan Province, China, is a watershed prone to debris flows and has long-term recorded data of debris-flow occurrence. However, the initiation mechanism has mainly been studied by experiments in this watershed. To further reveal debris-flow formation mechanism in the Jiangjia Gully, debris-flow activities in the initiation zone were observed with hand-held video cameras in the summer of 2016 and 2017. In these two years, six debris-flow events were triggered in Menqian Gully, a major tributary of the Jiangjia Gully, while debrisflow activities in some sub-watersheds of Menqian Gully were recorded with video cameras in four events. The video recording shows that landslides constituted an important source for sediment supply in debris flow. Some landslides directly evolved into debris flows, while the others released sediment into rills and channels, where debris flows were generated for sediment entrainment by water flow. Therefore, debris-flow occurrence in the Jiangjia Gully is influenced both by infiltration-dominated processes and by runoff-dominated processes. In addition, rainfall data from four gauges installed in Menqian Gully were analyzed using mean intensity(I), duration(D), peak 10-minute rainfall(R10min) and antecedent rainfall(AR) up to 15 days prior to peak 10-minute rainfall. It reveals that debris-flow triggering events can be discriminated from nontriggering events either by an I-D threshold or by an R10min-AR threshold. However, false alarms can be greatly reduced if these two kinds of thresholds are used together. Moreover, behaviors including intermittency of debris flow, variance in moisture content and volume among surges, and coalescence of multiple surges by temporary damming were observed, indicating the complexity of debris-flow initiation processes. These findings are expected to enhance our knowledge on debris-flow formation mechanism in regions with similar environmental settings.展开更多
On the basis of the observational data on the annual sediment transport by debris flow in recent 8 years, appling the catastrophe forecast method of Grey System Theory, this study has established the catastrophe model...On the basis of the observational data on the annual sediment transport by debris flow in recent 8 years, appling the catastrophe forecast method of Grey System Theory, this study has established the catastrophe model of the annual sediment transport by debris flow in Jiangjia Gully. It has forecasted the next potential catastrophic year in which the annual sediment transport will be over the catastrophic. threshold 2 million m3. Furthermore, it has introduced the 'equal dimension-new information model', which makes the forecast be done continuously.展开更多
Non-homogeneous two-phase debris flows are widely found in the western mountainous regions of China. To investigate the characteristics of the debris flow deposition process related to the morphology and extent of the...Non-homogeneous two-phase debris flows are widely found in the western mountainous regions of China. To investigate the characteristics of the debris flow deposition process related to the morphology and extent of the debris fan, a series of physical experiments were carried out using an experimental flume. Some useful relationships were obtained to link the flow velocity with the geometric characteristics of deposition morphology and the corresponding area or volume. Based on these, some expressions about energy dissipation process in both the transport-deposition zone and deposition zone are presented, and improved equations describing solidliquid two-phase energy transformations in the specific deposition zone are also established. These results provide a basis for further investigating the underlying mechanisms of non-homogeneous debris flows, based upon which effective disaster control measures can be undertaken.展开更多
Zhatai gully is a typical debris flow channel in Butuo county of Sichuan province, southwestern China. The geomorphologic features are analyzed and the physical-dynamic characteristics are discussed on the basis of fi...Zhatai gully is a typical debris flow channel in Butuo county of Sichuan province, southwestern China. The geomorphologic features are analyzed and the physical-dynamic characteristics are discussed on the basis of field investigation and laboratory tests. Geomorphologic analysis indicates that Zhatai-gully drainage in relation to debris flow can be divided into source area, transport area, and deposition area. The source area has a steep slope and has very limited vegetation cover, which favors runoff, allowing loose solid materials to be mobilized easily and rapidly. In the transport area, there are many small landslides, lateral lobes, and loose materials distributed on both banks. These landslides are active and constantly providing abundant source of soils for the debris flows. In the deposition area, three old debris-flow deposits of different ages can be observed. The dynamic calculation shows that within the recurrence intervals of 50 and lOO years, debris flow discharges are 155.77m^3/s and 178.19m^3/s and deposition volumes are 16.39 × 10^4 m^3 and 18.14 × 10^4 m^3, respectively. The depositional fan of an old debris flow in the outlet of the gully can be subdivided into six layers. There are three debris flow deposits on left and two on the right side of the gully. Grain-size tests of sediments from the soil, gulley bed deposits, and the fresh and old debris flow deposits showed that high amounts of clay and fine gravel were derived from the soil in the source area whereas much of the gravel fraction were sourced from the gully bed deposits. Comprehensive analysis indicates that Zhatai gully is viscous debris-flow gully with moderate to high frequency and moderate to large magnitude debris flows. The risk of a debris flow disaster in Zhatai-gully is moderate and poses a potential threat to the planned hydroelectric dam. Appropriate engineering measures are suggested in the construction and protection of the planned hydroelectric station.展开更多
Fine root is critical to restrain soil erosion and its distribution pattern is of great influence on the restraining effects. This study studied the fine root biomass (Br) distribution of different aged Leucaena leu...Fine root is critical to restrain soil erosion and its distribution pattern is of great influence on the restraining effects. This study studied the fine root biomass (Br) distribution of different aged Leucaena leucocephala (5, 10, 15 years) in debris flow source area in Jiangjia Gully by digging downward to the bottom at different distances to stem in three directions on slope. The results showed the Br increased dramatically by 143% from 5 years to lO years and then rose slowly by 38% from to years to 15 years. The Br of 5 years was significantly asymmetric between uphill and alonghill directions, but there was little difference among directions for other ages, and a concentration trend appeared to exist in downhill and alonghill directions. Moreover, fine root (D≤1 mm) was significantly heavier than that of fine root (1mm〈D〈2 ram), playing a leading role in the vertical distribution of the whole fine root, with a logarithmic or an exponential function. The results presented may shed light on fine root distribution pattern and evaluation of its effect on slope stability in debris flow source area.展开更多
This study proposes a comprehensive method,which consists of field investigation,flume test and numerical simulation,to predict the velocity and sediment thickness of debris flow.The velocity and sediment thickness of...This study proposes a comprehensive method,which consists of field investigation,flume test and numerical simulation,to predict the velocity and sediment thickness of debris flow.The velocity and sediment thickness of the debris flow in mountainous areas can provide critical data to evaluate the geohazard,which will in turn help to understand the debris runout.The flume test of this debris prototype can provide friction coefficient and viscosity coefficient which are important for numerical simulation of debris flow.The relation between the key parameters in the numerical modelling using the Voellmy model and debris-flow rheology is discussed.Through simulation of a debris flow that occurred in Luzhuang gully,it is observed that the debris flow runout determined by the Voellmy model was well consistent with that obtained from field investigation and flume test,demonstrating the effectiveness of this study.The relationship between the Voellmy model and debris flow runout is also proposed.展开更多
Check dams are the most commonly used engineering measure for debris flow control worldwide.The scour and siltation characteristics between dams are important factors affecting dam design.In this study,classical dimen...Check dams are the most commonly used engineering measure for debris flow control worldwide.The scour and siltation characteristics between dams are important factors affecting dam design.In this study,classical dimensional analysis of the variables that influence the development of gully bed scour and siltation was carried out.Flume experiments were conducted to examine the influence characteristics of opening width,flume slope,debris flow density,and opening rate on the characteristics of gully bed scour and siltation.The influential characteristics of variables on the dimensionless scour depth,scour length,siltation length,scour volume and siltation volume were obtained.The experiments showed that,with an increase in the relative opening from 1.5 to 2.5,scour depth increased by 7.4%,scour length decreased by 11.2%,siltation length increased by 22.0%,scour volume decreased by 4.7%and siltation volume increased by 22.0%.With an increase in flume gradient from 0.105 to 0.213,scour depth,siltation length and siltation volume increased by 40.0%,65.9%and 65.9%,respectively,and scour length decreased by 20.1%.With an increase in sediment concentration from 0.303 to 0.545,siltation length and siltation volume increased by 15.4%and 15.4%,respectively,and scour depth,scour length and scour volume decreased by 9.6%,9.1%and 17.8%,respectively.As opening rate increased from 0.08 to 0.32,siltation length and siltation volume increased by 33.3%and 33.3%,respectively,and scour depth,scour length and scour volume decreased by 5.4%,13.7%and 18.4%,respectively.The results showed that the flume gradient was the most influential factor on scour depth,scour length,siltation length and siltation volume,and the sediment concentration was the most influential factor on scour volume.Then,according to the experimental data,some empirical formulas predicting scour depth,scour length,siltation length,scour volume and siltation volume were obtained.The error between the computed values according to the formulas in this paper and the observed values was within±10%.These research results may provide a technological basis for window dam design in debris flow disaster prevention and mitigation.展开更多
Debris flows are recurrent natural hazards in many mountainous regions.This paper presents a numerical study on the propagation of debris flows in natural erodible open channels,in which the bed erosion and sedimentat...Debris flows are recurrent natural hazards in many mountainous regions.This paper presents a numerical study on the propagation of debris flows in natural erodible open channels,in which the bed erosion and sedimentation processes are important.Based on the Bingham fluid theory,a mathematical model of the two-dimensional non-constant debris flow is developed.The governing equations include the continuity and momentum conservation equations of debris flow,the sediment convection-diffusion equation,the bed erosion-deposition equation and the bed-sediment size gradation adjustment equation.The yield stress and shear stress components are included to describe the dynamic rheological properties.The upwind control-volume Finite Volume Method (FVM) is applied to discretize the convection terms.The improved SIMPLE algorithm with velocity-free-surface coupled correction is developed to solve the equations on non-orthogonal,quadrilateral grids.The model is applied to simulate a debris flow event in Jiangjia Gully,Yunnan Province and to predict the flow pattern and bed erosion-deposition processes.The results show the effectiveness of the proposed numercial model in debris flow simulation and potential hazard analysis.展开更多
The Wenchuan earthquake induced large amounts of debris flows and catastrophic incidents triggered by subsequent rainstorms occurred frequently in the past 6 rainy seasons, and thus resulted in serious casualties, hug...The Wenchuan earthquake induced large amounts of debris flows and catastrophic incidents triggered by subsequent rainstorms occurred frequently in the past 6 rainy seasons, and thus resulted in serious casualties, huge economic loss and long-term impact. In this paper, post-seismic debris flows distributed in 10 Wenchuan earthquake extremely stricken counties were verified and debris flow database consisting of 609 debris flows was established based on detailed investigation organized by Land and Resources Department of Sichuan Province. Combined with database and related studies, the impact of Wenchuan earthquake on debris flows was analyzed. And then variation of formation conditions including rainfall threshold and landform condition was analyzed by contrasting pre-seismic and post-seismic debris flows. Followed are some typical viewpoints on initiation mechanism of post-seismic debris flows. In the end of this paper, characteristics of postseismic debris flows triggered by subsequent rainstorms were comprehensively summarized, such as regional group occurrence, high frequency, high viscosity, chain effect, huge dynamics, large scale and long duration. We hope this paper will be helpful in understanding the formation mechanism, disaster characteristics and prevention countermeasures of post-seismic debris flows in Wenchuan earthquake extremely stricken areas.展开更多
Eco-geotechnical measures for debris flow mitigation and control have attracted wide attention,but the mitigation effect is lack of quantitative evaluation of coordinated measures.In order to evaluate the debris flow ...Eco-geotechnical measures for debris flow mitigation and control have attracted wide attention,but the mitigation effect is lack of quantitative evaluation of coordinated measures.In order to evaluate the debris flow mitigation effect in the combinations of geotechnical engineering and ecological engineering,this study investigated the different trends of debris flows behaviour based on the sediment deposition on the gully bed and the loose material on the hillslope.Besides,this research proposed a new model involving vegetation coverage,source gravity energy and debris flow volume based on vegetation-erosion model.The new model validated that the debris flow volume was proportional to the gravity energy of gravel and rock fragments on the hillslope and inversely proportional to the vegetation coverage in a dry-hot valley setting.Furthermore,a typical area in the valley of the Xiaojiang River in Yunnan Province,China was quantified with the new model.The results showed that under different gravity energy conditions,the implementation order of check dam construction and afforestation was important for debris flow mitigation.展开更多
基金supported by the project of the China Geological Survey(No.DD20221746)the National Natural Science Foundation of China(Grant Nos.41101086)。
文摘Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.
基金supported by The National Key Research and Development Program of China (Grant No. 2018YFC1505406)the National Natural Science Foundation of China (Grant Nos. 41502337, 41671112, 41661134012, 41501012)the China Geological Survey (Grant Nos. DD20160274, DD20190640)
文摘The magnitude-frequency(MF) relationship of debris flows is the basis for engineering designs and risk quantification. However, because of the lack of debris flow monitoring data, research progress in this area has been relatively slow. The MF relationship of debris flows in Jiangjia Gully, Yunnan Province was evaluated based on a regression analysis of 178 debris flow events that occurred from 1987-2004. The magnitude-cumulative frequency(MCF) relationship of the debris flows in the Jiangjia Gully is consistent with the linear logarithmic transformation function. Moreover, observed data for debris flows in Hunshui Gully of Yunnan Province and Huoshao Gully, Liuwan Gully, and Niwan Gully of Gansu Province were used to verify the function. The results showed that the MCF relationship of highfrequency debris flows is consistent with the power law equation, although the regression coefficients in the equation are considerably different. Further analysis showed a strong correlation between the differences in the constants and the drainage area and daily maximum precipitation.
基金financially supported by the National Key Research and Development Program of China(2020YFD1100701)the Science and Technology Research and Development Program of China Railway(K2019G006)the Chongqing Municipal Bureau of Land,Resources and Housing Administration(KJ-2021016)。
文摘The Jiangjia Gully, which is located in Dongchuan District, Yunnan Province, China, is a watershed prone to debris flows and has long-term recorded data of debris-flow occurrence. However, the initiation mechanism has mainly been studied by experiments in this watershed. To further reveal debris-flow formation mechanism in the Jiangjia Gully, debris-flow activities in the initiation zone were observed with hand-held video cameras in the summer of 2016 and 2017. In these two years, six debris-flow events were triggered in Menqian Gully, a major tributary of the Jiangjia Gully, while debrisflow activities in some sub-watersheds of Menqian Gully were recorded with video cameras in four events. The video recording shows that landslides constituted an important source for sediment supply in debris flow. Some landslides directly evolved into debris flows, while the others released sediment into rills and channels, where debris flows were generated for sediment entrainment by water flow. Therefore, debris-flow occurrence in the Jiangjia Gully is influenced both by infiltration-dominated processes and by runoff-dominated processes. In addition, rainfall data from four gauges installed in Menqian Gully were analyzed using mean intensity(I), duration(D), peak 10-minute rainfall(R10min) and antecedent rainfall(AR) up to 15 days prior to peak 10-minute rainfall. It reveals that debris-flow triggering events can be discriminated from nontriggering events either by an I-D threshold or by an R10min-AR threshold. However, false alarms can be greatly reduced if these two kinds of thresholds are used together. Moreover, behaviors including intermittency of debris flow, variance in moisture content and volume among surges, and coalescence of multiple surges by temporary damming were observed, indicating the complexity of debris-flow initiation processes. These findings are expected to enhance our knowledge on debris-flow formation mechanism in regions with similar environmental settings.
文摘On the basis of the observational data on the annual sediment transport by debris flow in recent 8 years, appling the catastrophe forecast method of Grey System Theory, this study has established the catastrophe model of the annual sediment transport by debris flow in Jiangjia Gully. It has forecasted the next potential catastrophic year in which the annual sediment transport will be over the catastrophic. threshold 2 million m3. Furthermore, it has introduced the 'equal dimension-new information model', which makes the forecast be done continuously.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11372048, 10972042)National Basic Research Program of China (2011CB403304)+2 种基金Open Fund of Chengdu University of Technology (SKLGP2012K027)Open Fund of State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (SKHL1409)Open Foundation of the Institute of Mountain Hazards and Environment
文摘Non-homogeneous two-phase debris flows are widely found in the western mountainous regions of China. To investigate the characteristics of the debris flow deposition process related to the morphology and extent of the debris fan, a series of physical experiments were carried out using an experimental flume. Some useful relationships were obtained to link the flow velocity with the geometric characteristics of deposition morphology and the corresponding area or volume. Based on these, some expressions about energy dissipation process in both the transport-deposition zone and deposition zone are presented, and improved equations describing solidliquid two-phase energy transformations in the specific deposition zone are also established. These results provide a basis for further investigating the underlying mechanisms of non-homogeneous debris flows, based upon which effective disaster control measures can be undertaken.
基金financially supported by State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Grant No.SKLGP2014K007)
文摘Zhatai gully is a typical debris flow channel in Butuo county of Sichuan province, southwestern China. The geomorphologic features are analyzed and the physical-dynamic characteristics are discussed on the basis of field investigation and laboratory tests. Geomorphologic analysis indicates that Zhatai-gully drainage in relation to debris flow can be divided into source area, transport area, and deposition area. The source area has a steep slope and has very limited vegetation cover, which favors runoff, allowing loose solid materials to be mobilized easily and rapidly. In the transport area, there are many small landslides, lateral lobes, and loose materials distributed on both banks. These landslides are active and constantly providing abundant source of soils for the debris flows. In the deposition area, three old debris-flow deposits of different ages can be observed. The dynamic calculation shows that within the recurrence intervals of 50 and lOO years, debris flow discharges are 155.77m^3/s and 178.19m^3/s and deposition volumes are 16.39 × 10^4 m^3 and 18.14 × 10^4 m^3, respectively. The depositional fan of an old debris flow in the outlet of the gully can be subdivided into six layers. There are three debris flow deposits on left and two on the right side of the gully. Grain-size tests of sediments from the soil, gulley bed deposits, and the fresh and old debris flow deposits showed that high amounts of clay and fine gravel were derived from the soil in the source area whereas much of the gravel fraction were sourced from the gully bed deposits. Comprehensive analysis indicates that Zhatai gully is viscous debris-flow gully with moderate to high frequency and moderate to large magnitude debris flows. The risk of a debris flow disaster in Zhatai-gully is moderate and poses a potential threat to the planned hydroelectric dam. Appropriate engineering measures are suggested in the construction and protection of the planned hydroelectric station.
基金supported by the National Science and Technology Support Projects (Grant No. 2012BAC06B02)National Basic Research Program of China (973 Program, Grant No. 2011CB409903)The National Natural Science Foundation of China (Grant No. 40771025)
文摘Fine root is critical to restrain soil erosion and its distribution pattern is of great influence on the restraining effects. This study studied the fine root biomass (Br) distribution of different aged Leucaena leucocephala (5, 10, 15 years) in debris flow source area in Jiangjia Gully by digging downward to the bottom at different distances to stem in three directions on slope. The results showed the Br increased dramatically by 143% from 5 years to lO years and then rose slowly by 38% from to years to 15 years. The Br of 5 years was significantly asymmetric between uphill and alonghill directions, but there was little difference among directions for other ages, and a concentration trend appeared to exist in downhill and alonghill directions. Moreover, fine root (D≤1 mm) was significantly heavier than that of fine root (1mm〈D〈2 ram), playing a leading role in the vertical distribution of the whole fine root, with a logarithmic or an exponential function. The results presented may shed light on fine root distribution pattern and evaluation of its effect on slope stability in debris flow source area.
基金This research was partially supported by the Open fund projects of JiangXi Engineering Research Center of Water Engineering Safety and Resources Efficient Utilization(OF201603)Jiangxi Provincial Key Scientific Research Plan(Nos.20161BBG70051,20177BBG70046)+1 种基金National Natural Science Foundation of China(Nos.41641023,51869012)Jiangxi Provincial Department of Education Science and Technology Research Project Project(No.GJJ151124).
文摘This study proposes a comprehensive method,which consists of field investigation,flume test and numerical simulation,to predict the velocity and sediment thickness of debris flow.The velocity and sediment thickness of the debris flow in mountainous areas can provide critical data to evaluate the geohazard,which will in turn help to understand the debris runout.The flume test of this debris prototype can provide friction coefficient and viscosity coefficient which are important for numerical simulation of debris flow.The relation between the key parameters in the numerical modelling using the Voellmy model and debris-flow rheology is discussed.Through simulation of a debris flow that occurred in Luzhuang gully,it is observed that the debris flow runout determined by the Voellmy model was well consistent with that obtained from field investigation and flume test,demonstrating the effectiveness of this study.The relationship between the Voellmy model and debris flow runout is also proposed.
基金the Second Scientific Expedition to Qinghai-Tibet Plateau(Grant No.2019QZKK0902)the National Research and Development Program of China(Grant No.2020YFD1100701)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA23090403)。
文摘Check dams are the most commonly used engineering measure for debris flow control worldwide.The scour and siltation characteristics between dams are important factors affecting dam design.In this study,classical dimensional analysis of the variables that influence the development of gully bed scour and siltation was carried out.Flume experiments were conducted to examine the influence characteristics of opening width,flume slope,debris flow density,and opening rate on the characteristics of gully bed scour and siltation.The influential characteristics of variables on the dimensionless scour depth,scour length,siltation length,scour volume and siltation volume were obtained.The experiments showed that,with an increase in the relative opening from 1.5 to 2.5,scour depth increased by 7.4%,scour length decreased by 11.2%,siltation length increased by 22.0%,scour volume decreased by 4.7%and siltation volume increased by 22.0%.With an increase in flume gradient from 0.105 to 0.213,scour depth,siltation length and siltation volume increased by 40.0%,65.9%and 65.9%,respectively,and scour length decreased by 20.1%.With an increase in sediment concentration from 0.303 to 0.545,siltation length and siltation volume increased by 15.4%and 15.4%,respectively,and scour depth,scour length and scour volume decreased by 9.6%,9.1%and 17.8%,respectively.As opening rate increased from 0.08 to 0.32,siltation length and siltation volume increased by 33.3%and 33.3%,respectively,and scour depth,scour length and scour volume decreased by 5.4%,13.7%and 18.4%,respectively.The results showed that the flume gradient was the most influential factor on scour depth,scour length,siltation length and siltation volume,and the sediment concentration was the most influential factor on scour volume.Then,according to the experimental data,some empirical formulas predicting scour depth,scour length,siltation length,scour volume and siltation volume were obtained.The error between the computed values according to the formulas in this paper and the observed values was within±10%.These research results may provide a technological basis for window dam design in debris flow disaster prevention and mitigation.
基金supported by the National Basic Research Program of China (973 Program)(Grant No.2011CB409902)the Knowledge Innovation Project of the Chinese Academy of Sciences (No.KZCX2-YW-302)
文摘Debris flows are recurrent natural hazards in many mountainous regions.This paper presents a numerical study on the propagation of debris flows in natural erodible open channels,in which the bed erosion and sedimentation processes are important.Based on the Bingham fluid theory,a mathematical model of the two-dimensional non-constant debris flow is developed.The governing equations include the continuity and momentum conservation equations of debris flow,the sediment convection-diffusion equation,the bed erosion-deposition equation and the bed-sediment size gradation adjustment equation.The yield stress and shear stress components are included to describe the dynamic rheological properties.The upwind control-volume Finite Volume Method (FVM) is applied to discretize the convection terms.The improved SIMPLE algorithm with velocity-free-surface coupled correction is developed to solve the equations on non-orthogonal,quadrilateral grids.The model is applied to simulate a debris flow event in Jiangjia Gully,Yunnan Province and to predict the flow pattern and bed erosion-deposition processes.The results show the effectiveness of the proposed numercial model in debris flow simulation and potential hazard analysis.
基金supported by the National Science Foundation of China(Grant No.41102226)the Project of China Special Project of Basic Work of Science and Technology(Grant No.2011FY110100-1)
文摘The Wenchuan earthquake induced large amounts of debris flows and catastrophic incidents triggered by subsequent rainstorms occurred frequently in the past 6 rainy seasons, and thus resulted in serious casualties, huge economic loss and long-term impact. In this paper, post-seismic debris flows distributed in 10 Wenchuan earthquake extremely stricken counties were verified and debris flow database consisting of 609 debris flows was established based on detailed investigation organized by Land and Resources Department of Sichuan Province. Combined with database and related studies, the impact of Wenchuan earthquake on debris flows was analyzed. And then variation of formation conditions including rainfall threshold and landform condition was analyzed by contrasting pre-seismic and post-seismic debris flows. Followed are some typical viewpoints on initiation mechanism of post-seismic debris flows. In the end of this paper, characteristics of postseismic debris flows triggered by subsequent rainstorms were comprehensively summarized, such as regional group occurrence, high frequency, high viscosity, chain effect, huge dynamics, large scale and long duration. We hope this paper will be helpful in understanding the formation mechanism, disaster characteristics and prevention countermeasures of post-seismic debris flows in Wenchuan earthquake extremely stricken areas.
基金supported by the National Natural Science Foundation of China(41790434 and 41907229)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0903)+2 种基金Chinese Academy of Sciences(XDA23090401)the National Key R&D Program of China(2018YFC1505201)the Beijing Municipal Education Commission for their financial support through Innovative Trans disciplinary Program“Ecological Restoration Engineering”。
文摘Eco-geotechnical measures for debris flow mitigation and control have attracted wide attention,but the mitigation effect is lack of quantitative evaluation of coordinated measures.In order to evaluate the debris flow mitigation effect in the combinations of geotechnical engineering and ecological engineering,this study investigated the different trends of debris flows behaviour based on the sediment deposition on the gully bed and the loose material on the hillslope.Besides,this research proposed a new model involving vegetation coverage,source gravity energy and debris flow volume based on vegetation-erosion model.The new model validated that the debris flow volume was proportional to the gravity energy of gravel and rock fragments on the hillslope and inversely proportional to the vegetation coverage in a dry-hot valley setting.Furthermore,a typical area in the valley of the Xiaojiang River in Yunnan Province,China was quantified with the new model.The results showed that under different gravity energy conditions,the implementation order of check dam construction and afforestation was important for debris flow mitigation.