Reeds are widely distributed in drought and high salt conditions of northwestern China. Leaf epidermal micromorphology, anatomy, chloroplast ultrastructure and physio-chemical characteristics due to long-term adaptati...Reeds are widely distributed in drought and high salt conditions of northwestern China. Leaf epidermal micromorphology, anatomy, chloroplast ultrastructure and physio-chemical characteristics due to long-term adaptation in the natural habitats of common reed (Phragmites communis Trin.) contrasted considerably among three different ecotypes: dune reed (DR), Gobi salt reed (GSR) and swamp reed (SR). The main objective of the present study is to determine the adapting characteristics of morphology, anatomy and physiological responses of thin roots in DR, GSR and SR. The results show that root length density was higher in SR and few root hairs were observed in DR. Cross-section anatomical features show that each ecotype has an endodermis and exodermis, while cortex thickness and proportion of root cortical aerenchyma and stele in root structure varied among the three ecotypes. The stele and xylem share a larger area in DR compared to GSR and SR. GSR has a large proportion of the cortex with radialized distribution of aerenchyma cells spacing, and the cortex has a peripheral, mechanically stiff ring in the exodermis. SEM and TEM microscope images show that GSR has a scle- renchyma ring with high lignification in the exodermis. The physio-chemical parameters show that GSR had a higher level of stress tolerance than DR. These findings indicate that developed water-absorbing tissues were largely distributed in the root structure of DR, and a main framework with supporting function spacing with aerenchyma was dominant in GSR in the long term adaptation to their natural habitats, respectively.展开更多
Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and explo...Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and exploitation.Proppant fracturing is considered as the best method for exploiting carbonate reservoirs;however,previous studies primarily focused on the effects of individual types of geological formations,such as natural fractures or cavities,on fracture propagation.In this study,true-triaxial physical simulation experiments were systematically performed under four types of stress difference conditions after the accurate prefabrication of four types of different fracture-cavity distributions in artificial samples.Subsequently,the interaction mechanism between the hydraulic fractures and fracture-cavity structures was systematically analyzed in combination with the stress distribution,cross-sectional morphology of the main propagation path,and three-dimensional visualization of the overall fracture network.It was found that the propagation of hydraulic fractures near the cavity was inhibited by the stress concentration surrounding the cavity.In contrast,a natural fracture with a smaller approach angle(0°and 30°)around the cavity can alleviate the stress concentration and significantly facilitate the connection with the cavity.In addition,the hydraulic fracture crossed the natural fracture at the 45°approach angle and bypassed the cavity under higher stress difference conditions.A new stimulation effectiveness evaluation index was established based on the stimulated reservoir area(SRA),tortuosity of the hydraulic fractures(T),and connectivity index(CI)of the cavities.These findings provide new insights into the fracturing design of carbonate reservoirs.展开更多
Understanding the relationship between unbalanced riverbed scouring or deposition and the evolution of central bars in natural conditions and human activity is useful for river regime control and waterway improvement ...Understanding the relationship between unbalanced riverbed scouring or deposition and the evolution of central bars in natural conditions and human activity is useful for river regime control and waterway improvement projects.Toward this end,we utilized the Yangzhong reach in the lower reaches of the Yangtze River as a case study and evaluated runoff,sediment content,and topographical data measured over the past 70 years(1951–2021).With the decrease in the amount of incoming sediment in the river basin,the Yangzhong reach exhibited a continuous state of scouring.The cumulative riverbed scouring volumes of the low-water and flood channels from 1981 to 2021 were 3.97×10^(8)and 4.14×10^(8)m^(3),respectively,with the riverbed scouring volume of the low-water channel accounting for 95.9%of that of the flood channel.Under quasi-natural runoff–sediment conditions,the evolution of the central bars in the Yangzhong reach was highly correlated with the amount of scouring or deposition.In particular,the Luochengzhou reach could be characterized as a meandering river with scouring on concave riverbanks and deposition on convex riverbanks.In the context of reduced incoming sediment,the beach area of the Yangzhong reach decreased by approximately 9.9%(from 2003 to 2021)and the central bars of the straight section areas decreased.Moreover,following operation of the Three Gorges Reservoir,both the Luocheng central bar and Jiangyin beach areas could be characterized as meandering rivers with convex riverbanks and beaches.In the quasi-natural period before the implementation of the waterway improvement project,the trend of high scouring intensity and increased fluid diversion ratio in the right branch of the Luocheng central bar was in accordance with the law that the short branch of the length is in a developing state under the condition of decreasing river sediment volume.With the control of riverbank protection and the construction of waterway improvement projects in the Yangzhong reach,the shapes of the riverbanks and central bars were effectively stabilized,and the linkage relationship formed in the quasi-natural period was interrupted.Overall,these findings provide a strong foundation for understanding riverbed scouring or deposition and the evolution of central bars under the influence of natural conditions and human activities,and will inform future river management and waterway dimension planning.展开更多
Multiple morphologies of colloidal perovskite nanocrystals(NCs)diversify their optical and electronic properties.Among them,the linear absorption cross-section(σ)is a primary parameter to determine their intrinsic ph...Multiple morphologies of colloidal perovskite nanocrystals(NCs)diversify their optical and electronic properties.Among them,the linear absorption cross-section(σ)is a primary parameter to determine their intrinsic photophysical features,and consequently,application potential.Herein,three morphologies of all-inorganic hybrid colloidal perovskite CsPbBr_(3)NCs,nanocubes(NBs),nanoplatelets(NLs),and nanowires(NWs),were targeted,and their linearσvalues were obtained through femtosecond transient absorption(TA)spectroscopy analysis.At high excitation energy well above the bandgap,theσper particle of all CsPbBr3 NCs linearly increased with the particle volume(VNC)regardless of the morphology with the value ofσ400=9.45×10^(4)cm^(−1)×VNC(cm^(2)).Density functional theory(DFT)calculation confirmed the negligible influence of shapes on the optical selection rules.The Einstein spontaneous emission coefficients calculated from theσvalues define the intrinsic radiative recombination rate.However,reduced size dependence is observed when the excitation energy is close to the bandgap(i.e.,at 460 nm)with the value ofσ460=2.82×10^(8)cm0.65×(VNC)0.45(cm^(2)).This should be ascribed to the discrete energy levels as well as lower density of states close to the band edge for perovskite NCs.These results provide in-depth insight into the optical characteristics for perovskite NCs.展开更多
基金financially supported by the State Key Development Program for Basic Research of China(973 Program,Grant No.2013CB429904)the National Natural Science Foundation of China(Grant No.91125029)
文摘Reeds are widely distributed in drought and high salt conditions of northwestern China. Leaf epidermal micromorphology, anatomy, chloroplast ultrastructure and physio-chemical characteristics due to long-term adaptation in the natural habitats of common reed (Phragmites communis Trin.) contrasted considerably among three different ecotypes: dune reed (DR), Gobi salt reed (GSR) and swamp reed (SR). The main objective of the present study is to determine the adapting characteristics of morphology, anatomy and physiological responses of thin roots in DR, GSR and SR. The results show that root length density was higher in SR and few root hairs were observed in DR. Cross-section anatomical features show that each ecotype has an endodermis and exodermis, while cortex thickness and proportion of root cortical aerenchyma and stele in root structure varied among the three ecotypes. The stele and xylem share a larger area in DR compared to GSR and SR. GSR has a large proportion of the cortex with radialized distribution of aerenchyma cells spacing, and the cortex has a peripheral, mechanically stiff ring in the exodermis. SEM and TEM microscope images show that GSR has a scle- renchyma ring with high lignification in the exodermis. The physio-chemical parameters show that GSR had a higher level of stress tolerance than DR. These findings indicate that developed water-absorbing tissues were largely distributed in the root structure of DR, and a main framework with supporting function spacing with aerenchyma was dominant in GSR in the long term adaptation to their natural habitats, respectively.
基金sponsored by the National Natural Science Foundation of China(Grants Nos.52104046 and 52104010).
文摘Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and exploitation.Proppant fracturing is considered as the best method for exploiting carbonate reservoirs;however,previous studies primarily focused on the effects of individual types of geological formations,such as natural fractures or cavities,on fracture propagation.In this study,true-triaxial physical simulation experiments were systematically performed under four types of stress difference conditions after the accurate prefabrication of four types of different fracture-cavity distributions in artificial samples.Subsequently,the interaction mechanism between the hydraulic fractures and fracture-cavity structures was systematically analyzed in combination with the stress distribution,cross-sectional morphology of the main propagation path,and three-dimensional visualization of the overall fracture network.It was found that the propagation of hydraulic fractures near the cavity was inhibited by the stress concentration surrounding the cavity.In contrast,a natural fracture with a smaller approach angle(0°and 30°)around the cavity can alleviate the stress concentration and significantly facilitate the connection with the cavity.In addition,the hydraulic fracture crossed the natural fracture at the 45°approach angle and bypassed the cavity under higher stress difference conditions.A new stimulation effectiveness evaluation index was established based on the stimulated reservoir area(SRA),tortuosity of the hydraulic fractures(T),and connectivity index(CI)of the cavities.These findings provide new insights into the fracturing design of carbonate reservoirs.
基金National Natural Science Foundation of China,No.52279066Fundamental Research Funds for Central Welfare Research Institutes,No.TKS20230206The CRSRI Open Research Program,No.CKWV2021862/KY。
文摘Understanding the relationship between unbalanced riverbed scouring or deposition and the evolution of central bars in natural conditions and human activity is useful for river regime control and waterway improvement projects.Toward this end,we utilized the Yangzhong reach in the lower reaches of the Yangtze River as a case study and evaluated runoff,sediment content,and topographical data measured over the past 70 years(1951–2021).With the decrease in the amount of incoming sediment in the river basin,the Yangzhong reach exhibited a continuous state of scouring.The cumulative riverbed scouring volumes of the low-water and flood channels from 1981 to 2021 were 3.97×10^(8)and 4.14×10^(8)m^(3),respectively,with the riverbed scouring volume of the low-water channel accounting for 95.9%of that of the flood channel.Under quasi-natural runoff–sediment conditions,the evolution of the central bars in the Yangzhong reach was highly correlated with the amount of scouring or deposition.In particular,the Luochengzhou reach could be characterized as a meandering river with scouring on concave riverbanks and deposition on convex riverbanks.In the context of reduced incoming sediment,the beach area of the Yangzhong reach decreased by approximately 9.9%(from 2003 to 2021)and the central bars of the straight section areas decreased.Moreover,following operation of the Three Gorges Reservoir,both the Luocheng central bar and Jiangyin beach areas could be characterized as meandering rivers with convex riverbanks and beaches.In the quasi-natural period before the implementation of the waterway improvement project,the trend of high scouring intensity and increased fluid diversion ratio in the right branch of the Luocheng central bar was in accordance with the law that the short branch of the length is in a developing state under the condition of decreasing river sediment volume.With the control of riverbank protection and the construction of waterway improvement projects in the Yangzhong reach,the shapes of the riverbanks and central bars were effectively stabilized,and the linkage relationship formed in the quasi-natural period was interrupted.Overall,these findings provide a strong foundation for understanding riverbed scouring or deposition and the evolution of central bars under the influence of natural conditions and human activities,and will inform future river management and waterway dimension planning.
基金supported by the National Natural Science Foundation of China (NSFC, U1862111)China Scholarship Council (201706990062)+4 种基金Independent Research Fund Denmark-Nature Sciences (DFF-7014-00302)Independent Research Fund Denmark-Sapere Aude starting grant (7026-00037A)Swedish Research Council VR starting grant (2017-05337), grants VR2018-06011, and VR201805090the Research Fund for international Young Scientists from NSFC, China (21950410515)Swedish Energy Agency
文摘Multiple morphologies of colloidal perovskite nanocrystals(NCs)diversify their optical and electronic properties.Among them,the linear absorption cross-section(σ)is a primary parameter to determine their intrinsic photophysical features,and consequently,application potential.Herein,three morphologies of all-inorganic hybrid colloidal perovskite CsPbBr_(3)NCs,nanocubes(NBs),nanoplatelets(NLs),and nanowires(NWs),were targeted,and their linearσvalues were obtained through femtosecond transient absorption(TA)spectroscopy analysis.At high excitation energy well above the bandgap,theσper particle of all CsPbBr3 NCs linearly increased with the particle volume(VNC)regardless of the morphology with the value ofσ400=9.45×10^(4)cm^(−1)×VNC(cm^(2)).Density functional theory(DFT)calculation confirmed the negligible influence of shapes on the optical selection rules.The Einstein spontaneous emission coefficients calculated from theσvalues define the intrinsic radiative recombination rate.However,reduced size dependence is observed when the excitation energy is close to the bandgap(i.e.,at 460 nm)with the value ofσ460=2.82×10^(8)cm0.65×(VNC)0.45(cm^(2)).This should be ascribed to the discrete energy levels as well as lower density of states close to the band edge for perovskite NCs.These results provide in-depth insight into the optical characteristics for perovskite NCs.