For a spherical four-bar linkage,the maximum number of the spherical RR dyad(R:revolute joint)of five-orientation motion generation can be at most 6.However,complete real solution of this problem has seldom been st...For a spherical four-bar linkage,the maximum number of the spherical RR dyad(R:revolute joint)of five-orientation motion generation can be at most 6.However,complete real solution of this problem has seldom been studied.In order to obtain six real RR dyads,based on Strum's theorem,the relationships between the design parameters are derived from a 6th-degree univariate polynomial equation that is deduced from the constraint equations of the spherical RR dyad by using Dixon resultant method.Moreover,the Grashof condition and the circuit defect condition are taken into account.Given the relationships between the design parameters and the aforementioned two conditions,two objective functions are constructed and optimized by the adaptive genetic algorithm(AGA).Two examples with six real spherical RR dyads are obtained by optimization,and the results verify the feasibility of the proposed method.The paper provides a method to synthesize the complete real solution of the five-orientation motion generation,which is also applicable to the problem that deduces to a univariate polynomial equation and requires the generation of as many as real roots.展开更多
An adaptive de-interlacing algorithm based on motion compensation is presented. It consists of the detection of motion blocks, the adaptive motion estimation with Kalman filtering, and the motion compensation for moti...An adaptive de-interlacing algorithm based on motion compensation is presented. It consists of the detection of motion blocks, the adaptive motion estimation with Kalman filtering, and the motion compensation for motion blocks and field repetition for static blocks. The detection of motion blocks can accurately identify the motion blocks by using successive 4-field images. The motion estimation module with Kalman filtering searches motion vectors only for motion blocks, and the search model is adaptive to motion velocity and acceleration. Two de-interlacing methods are adopted to satisfy the different requirements of motion blocks and static blocks. Compared with full search algorithm, the proposed algorithm greatly reduces the computational amount while keeping the performance approximately.展开更多
A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An ...A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An absolute difference algorithm is used for detecting image motion in the correlation tracker. The sampling frequency of the system is 419 Hz. We give a description of the system's configuration, an analysis of its performance and a report of our observational results. A residual jitter of 0.14 arcsec has been achieved. The error rejection bandwidth of the system can be adjusted in the range 5-28 Hz according to the beacon size and the strength of atmospheric turbulence.展开更多
This paper is devoted to the problem of modeling and adaptive motion/force tracking for a class of nonholonomic dynamic systems with affine constraints(NDSAC): a vertical wheel on a rotating table. Prior to the develo...This paper is devoted to the problem of modeling and adaptive motion/force tracking for a class of nonholonomic dynamic systems with affine constraints(NDSAC): a vertical wheel on a rotating table. Prior to the development of tracking controller,the dynamic model of the wheel in question is derived in a meticulous manner. A continuously differentiable friction model is also considered in the modeling. By exploiting the inherent cascade interconnected structure of the wheel dynamics, an adaptive motion/force tracking controller is presented guaranteeing that the trajectory tracking errors asymptotically converge to zero while the contact force tracking errors can be made small enough by tuning design parameters. Simulation results are provided to validate the effectiveness of the proposed tracking methodology.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51375059,61105103)National Hi-tech Research and Development Program of China(863 Program,Grant No.2011AA040203)Beijing Municipal Natural Science Foundation of China(Grant No.4132032)
文摘For a spherical four-bar linkage,the maximum number of the spherical RR dyad(R:revolute joint)of five-orientation motion generation can be at most 6.However,complete real solution of this problem has seldom been studied.In order to obtain six real RR dyads,based on Strum's theorem,the relationships between the design parameters are derived from a 6th-degree univariate polynomial equation that is deduced from the constraint equations of the spherical RR dyad by using Dixon resultant method.Moreover,the Grashof condition and the circuit defect condition are taken into account.Given the relationships between the design parameters and the aforementioned two conditions,two objective functions are constructed and optimized by the adaptive genetic algorithm(AGA).Two examples with six real spherical RR dyads are obtained by optimization,and the results verify the feasibility of the proposed method.The paper provides a method to synthesize the complete real solution of the five-orientation motion generation,which is also applicable to the problem that deduces to a univariate polynomial equation and requires the generation of as many as real roots.
文摘An adaptive de-interlacing algorithm based on motion compensation is presented. It consists of the detection of motion blocks, the adaptive motion estimation with Kalman filtering, and the motion compensation for motion blocks and field repetition for static blocks. The detection of motion blocks can accurately identify the motion blocks by using successive 4-field images. The motion estimation module with Kalman filtering searches motion vectors only for motion blocks, and the search model is adaptive to motion velocity and acceleration. Two de-interlacing methods are adopted to satisfy the different requirements of motion blocks and static blocks. Compared with full search algorithm, the proposed algorithm greatly reduces the computational amount while keeping the performance approximately.
基金Supported by the National Natural Science Foundation of China
文摘A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An absolute difference algorithm is used for detecting image motion in the correlation tracker. The sampling frequency of the system is 419 Hz. We give a description of the system's configuration, an analysis of its performance and a report of our observational results. A residual jitter of 0.14 arcsec has been achieved. The error rejection bandwidth of the system can be adjusted in the range 5-28 Hz according to the beacon size and the strength of atmospheric turbulence.
基金supported by the National Natural Science Foundation of China(6127309161403227+3 种基金61403228)the Ph.D.Programs Foundation of Ministry of Education of Chinathe Fundamental Research Funds for the Central Universities(KYLX15 0116)the Project of Taishan Scholar of Shandong Province of China
文摘This paper is devoted to the problem of modeling and adaptive motion/force tracking for a class of nonholonomic dynamic systems with affine constraints(NDSAC): a vertical wheel on a rotating table. Prior to the development of tracking controller,the dynamic model of the wheel in question is derived in a meticulous manner. A continuously differentiable friction model is also considered in the modeling. By exploiting the inherent cascade interconnected structure of the wheel dynamics, an adaptive motion/force tracking controller is presented guaranteeing that the trajectory tracking errors asymptotically converge to zero while the contact force tracking errors can be made small enough by tuning design parameters. Simulation results are provided to validate the effectiveness of the proposed tracking methodology.