Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detectio...Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios.展开更多
At seasonal and intraseasonal time scales, polar motions are mainly excited by angular momentum fluctuations due to mass redistributions and relative motions in the atmosphere, oceans, and continental water, snow, and...At seasonal and intraseasonal time scales, polar motions are mainly excited by angular momentum fluctuations due to mass redistributions and relative motions in the atmosphere, oceans, and continental water, snow, and ice, which are usually provided by various global atmospheric, oceanic, and hydrological models(some with meteorological observations assimilated; e.g., NCEP, ECCO, ECMWF, OMCT and LSDM etc.). Unfortunately, these model outputs are far from perfect and have notable discrepancies with respect to polar motion observations, due to non-uniform distributions of meteorological observatories,as well as theoretical approximations and non-global mass conservation in these models. In this study,the LDC(Least Difference Combination) method is adopted to obtain some improved atmospheric,oceanic, and hydrological/crospheric angular momentum(AAM, OAM and HAM/CAM, respectively)functions and excitation functions(termed as the LDCgsm solutions). Various GRACE(Gravity Recovery and Climate Experiment) and SLR(Satellite Laser Ranging) geopotential data are adopted to correct the non-global mass conservation problem, while polar motion data are used as general constraints. The LDCgsm solutions can reveal not only periodic fluctuations but also secular trends in AAM, OAM and HAM/CAM, and are in better agreement with polar motion observations, reducing the unexplained excitation to the level of about 5.5 mas(standard derivation value; about 1/5-1/4 of those corresponding to the original model outputs).展开更多
This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decod...This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decoding the VLC data, e.g. motion vector differences (MVDs), of H.264 across an AWGN channel. This method combines the source code state-space and the channel code state-space together to construct a joint state-space, develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol, and then uses max-log approximation to simplify the algorithm. Experiments indicate that the proposed system gives significant improvements on peak signal-to-noise ratio (PSNR) (maximum about 15 dB) than a separate scheme. This also leads to a higher visual quality of video stream over a highly noisy channel.展开更多
This Letter proposes a coordinate difference homogenization matching method to solve motion influence in three-dimensional(3D) range-intensity correlation laser imaging. Firstly, features and feature pairs of gate i...This Letter proposes a coordinate difference homogenization matching method to solve motion influence in three-dimensional(3D) range-intensity correlation laser imaging. Firstly, features and feature pairs of gate images are obtained by speeded-up robust figures and bi-directional feature matching methods. The original mean value of the feature-pair coordinate differences is calculated. Comparing the coordinate differences with the original mean value, the wrong feature pairs are removed, and then an optimized mean value is updated. The final feature-pair coordinates are re-registered based on the updated mean value. Thus, an accurate transformation is established to rectify motion gate images for 3D reconstruction. In the experiment, a 3D image of a tower at 780 m is successfully captured by our laser gated imaging system on a pan-tilt device.展开更多
基金the National Natural Science Foundation of China(Grant Nos.62272478,62202496,61872384).
文摘Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios.
基金supported in parts by the National 973 Project of China(No.2013CB733301 and 2013CB733305)the National Natural Science Foundation of China(No.41474022,41210006 and 41374022)+2 种基金the R&D Special Fund for Public Welfare Industry(Surveying and Mapping,No.201512001)the Fundamental Research Funds for the Central Universities of China(No.2042016kf0146)the China Postdoctoral Science Foundation(No.2014T70737)
文摘At seasonal and intraseasonal time scales, polar motions are mainly excited by angular momentum fluctuations due to mass redistributions and relative motions in the atmosphere, oceans, and continental water, snow, and ice, which are usually provided by various global atmospheric, oceanic, and hydrological models(some with meteorological observations assimilated; e.g., NCEP, ECCO, ECMWF, OMCT and LSDM etc.). Unfortunately, these model outputs are far from perfect and have notable discrepancies with respect to polar motion observations, due to non-uniform distributions of meteorological observatories,as well as theoretical approximations and non-global mass conservation in these models. In this study,the LDC(Least Difference Combination) method is adopted to obtain some improved atmospheric,oceanic, and hydrological/crospheric angular momentum(AAM, OAM and HAM/CAM, respectively)functions and excitation functions(termed as the LDCgsm solutions). Various GRACE(Gravity Recovery and Climate Experiment) and SLR(Satellite Laser Ranging) geopotential data are adopted to correct the non-global mass conservation problem, while polar motion data are used as general constraints. The LDCgsm solutions can reveal not only periodic fluctuations but also secular trends in AAM, OAM and HAM/CAM, and are in better agreement with polar motion observations, reducing the unexplained excitation to the level of about 5.5 mas(standard derivation value; about 1/5-1/4 of those corresponding to the original model outputs).
基金Supported by the Foundation of Ministry of Education of China (211CERS10)
文摘This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decoding the VLC data, e.g. motion vector differences (MVDs), of H.264 across an AWGN channel. This method combines the source code state-space and the channel code state-space together to construct a joint state-space, develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol, and then uses max-log approximation to simplify the algorithm. Experiments indicate that the proposed system gives significant improvements on peak signal-to-noise ratio (PSNR) (maximum about 15 dB) than a separate scheme. This also leads to a higher visual quality of video stream over a highly noisy channel.
基金supported by the National Key Research and Development Program of China(No.2016YFC0500103)the Youth Innovation Promotion Association CAS(No.2017155)the Scientific Instrument Development Project from Capital Science and Technology Condition Platform(No.Z171100002817002)
文摘This Letter proposes a coordinate difference homogenization matching method to solve motion influence in three-dimensional(3D) range-intensity correlation laser imaging. Firstly, features and feature pairs of gate images are obtained by speeded-up robust figures and bi-directional feature matching methods. The original mean value of the feature-pair coordinate differences is calculated. Comparing the coordinate differences with the original mean value, the wrong feature pairs are removed, and then an optimized mean value is updated. The final feature-pair coordinates are re-registered based on the updated mean value. Thus, an accurate transformation is established to rectify motion gate images for 3D reconstruction. In the experiment, a 3D image of a tower at 780 m is successfully captured by our laser gated imaging system on a pan-tilt device.