Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater ta...Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater target detection.Polarization imaging can reduce the influence of backscattered light and obtain high-quality images underwater.The optical flow shows the motion and structural information of the target.We use polarized optical flow to obtain the optical flow field and estimate the target motion.The experimental results of different targets under varying water turbidity levels illustrate that our method is realizable and robust.The precision is verified by comparing the results with the precise displacement data and calculating two error measures.The proposed method based on polarized optical flow can obtain accurate displacement information and a good recognition effect.Moving target segmentation based on the Otsu method further proves the superiority of the polarized optical flow under turbid water.This study is valuable for target detection and motion estimation in scattering environments.展开更多
A novel and effective approach to global motion estimation and moving object extraction is proposed. First, the translational motion model is used because of the fact that complex motion can be decomposed as a sum of ...A novel and effective approach to global motion estimation and moving object extraction is proposed. First, the translational motion model is used because of the fact that complex motion can be decomposed as a sum of translational components. Then in this application, the edge gray horizontal and vertical projections are used as the block matching feature for the motion vectors estimation. The proposed algorithm reduces the motion estimation computations by calculating the onedimensional vectors rather than the two-dimensional ones. Once the global motion is robustly estimated, relatively stationary background can be almost completely eliminated through the inter-frame difference method. To achieve an accurate object extraction result, the higher-order statistics (HOS) algorithm is used to discriminate backgrounds and moving objects. Experimental results validate that the proposed method is an effective way for global motion estimation and object extraction.展开更多
An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algor...An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence.展开更多
Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a p...Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a parameter estimation model of the boost phase based on trajectory plane parametric cutting.The use of the plane passing through the geo-center and the cutting sequence line of sight(LOS)generates the trajectory-cutting plane.With the coefficient of the trajectory cutting plane directly used as the parameter to be estimated,a motion parameter estimation model in space non-cooperative targets is established,and the Gauss-Newton iteration method is used to solve the flight parameters.The experimental results show that the estimation algorithm proposed in this paper weakly relies on prior information and has higher estimation accuracy,providing a practical new idea and method for the parameter estimation of space non-cooperative targets under single-satellite warning.展开更多
A new motion model and estimation algorithm is proposed to compute the general rigid motion object's 6-DOF motion parameters and center of rotation based on stereo vision. The object's 6-DOF motion model is designed...A new motion model and estimation algorithm is proposed to compute the general rigid motion object's 6-DOF motion parameters and center of rotation based on stereo vision. The object's 6-DOF motion model is designed from the rigid object's motion character under the two defined reference frames. According to the rigid object's motion model and motion dynamics knowledge, the corresponding motion algorithm to compute the 6-DOF motion parameters is worked out. By the rigid object pure rotation motion model and space sphere geometry knowledge, the center of rotation may be calculated after eliminating the translation motion out of the 6-DOF motion. The motion equations are educed based on the motion model and the closed-form solutions are figured out. To heighten the motion estimation algorithm's robust, RANSAC algorithm is applied to delete the outliers. Simulation and real experiments are conducted and the experiment results are analyzed. The results prove the motion model's correction and algorithm's validity.展开更多
Because of its characteristics of simple algorithm and hardware, optical flow-based motion estimation has become a hot research field, especially in GPS-denied environment. Optical flow could be used to obtain the air...Because of its characteristics of simple algorithm and hardware, optical flow-based motion estimation has become a hot research field, especially in GPS-denied environment. Optical flow could be used to obtain the aircraft motion information, but the six-(degree of freedom)(6-DOF) motion still couldn't be accurately estimated by existing methods. The purpose of this work is to provide a motion estimation method based on optical flow from forward and down looking cameras, which doesn't rely on the assumption of level flight. First, the distribution and decoupling method of optical flow from forward camera are utilized to get attitude. Then, the resulted angular velocities are utilized to obtain the translational optical flow of the down camera, which can eliminate the influence of rotational motion on velocity estimation. Besides, the translational motion estimation equation is simplified by establishing the relation between the depths of feature points and the aircraft altitude. Finally, simulation results show that the method presented is accurate and robust.展开更多
In this paper,we propose a novel adjustable multiple cross-hexagonal search(AMCHS) algorithm for fast block motion estimation. It employs adjustable multiple cross search patterns(AMCSP) in the first step and then use...In this paper,we propose a novel adjustable multiple cross-hexagonal search(AMCHS) algorithm for fast block motion estimation. It employs adjustable multiple cross search patterns(AMCSP) in the first step and then uses half-way-skip and half-way-stop technique to determine whether to employ two hexagonal search patterns(HSPs) subsequently. The AMCSP can be used to find small motion vectors efficiently while the HSPs can be used to find large ones accurately to ensure prediction quality. Simulation results showed that our proposed AMCHS achieves faster search speed,and provides better distortion performance than other popular fast search algorithms,such as CDS and CDHS.展开更多
Aiming at the higher bit-rate occupation of motion vector encoding and more time load of full-searching strategies, a multi-resolution motion estimation and compensation algorithm based on adjacent prediction of frame...Aiming at the higher bit-rate occupation of motion vector encoding and more time load of full-searching strategies, a multi-resolution motion estimation and compensation algorithm based on adjacent prediction of frame difference was proposed.Differential motion detection was employed to image sequences and proper threshold was adopted to identify the connected region.Then the motion region was extracted to carry out motion estimation and motion compensation on it.The experiment results show that the encoding efficiency of motion vector is promoted, the complexity of motion estimation is reduced and the quality of the reconstruction image at the same bit-rate as Multi-Resolution Motion Estimation(MRME) is improved.展开更多
In the field of predictive video coding and format conversion, there is an increasing attention towards estimation of the true inter-frame motion. The restoration of motion vector field computed by 3-D RS is addressed...In the field of predictive video coding and format conversion, there is an increasing attention towards estimation of the true inter-frame motion. The restoration of motion vector field computed by 3-D RS is addressed and a propagating adaptive-weighted vector median (PAWVM) post-filter is proposed. This approach decomposes blocks to make a better estimation on object borders and propagates good vectors in the scanning direction. Furthermore, a hard-thresholding method is introduced into calculating vector weights to improve the propagating. By exploiting both the spatial correlation of the vector field and the matching error of candidate vectors, PAWVM makes a good balance between the smoothness of vector field and the prediction error, and the output vector field is more valid to reflect the true motion.展开更多
Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fi...Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry. A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the panicle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF.展开更多
A correlation tracking algorithm based on template partition motion estimation proposed for improving real time performance of the conventional correlation matching algorithms. The target trajectory fitted using the l...A correlation tracking algorithm based on template partition motion estimation proposed for improving real time performance of the conventional correlation matching algorithms. The target trajectory fitted using the least square with equal space in whole interval and the target prediction point is found out. According to the requirements of block motion estimation(BME) algorithm,the template divided into some macro blocks. The searching process is conducted by using diamond search algorithm around the prediction point and the optimal motion vector of each block is calculated. A point corresponding to the motion vector with the best matching is taken as a rough matching point of the template. The relation of relative position between the block with matching point and the searching area determined to decide whether to conduct precise matching search or to construct a new search area in the gradient direction. The target tracking experiment results show that over 70% time cost can be reduced caompared with the conventional correlation matching algorithm based on full search method.展开更多
H.264/AVC video coding standard can achieve roughly half of the bit-savings over MPEG2 and MPEG4 for a given quality. However, this comes at a cost in considerably increased complexity at the encoder and thus increase...H.264/AVC video coding standard can achieve roughly half of the bit-savings over MPEG2 and MPEG4 for a given quality. However, this comes at a cost in considerably increased complexity at the encoder and thus increases the difficulty in hardware implementation. The high redundancy that exists between the successive frames of a video sequence makes it possible to achieve a high data compression ratio. Motion estimation (ME) plays an important role in motion compensated video coding. A fast motion estimation algorithm for H.264/AVC is proposed based on centered prediction, called centered prediction based fast mixed search algorithm (CPFMS). It makes use of the spatial and temporal correlation in motion vector (MV) fields and feature of all-zero blocks to accelerate the searching process. With the initialized searching point prediction, adaptive search window changing and searching direction decision, CPFMS is provided to reduce computation in block-matching process. The experimental results show that the speed of CPFMS is nearly 12 times of FS with a negligible peak signal-noise ratio (PSNR) loss. Also, the efficiency of CPFMS outperforms some popular fast algorithms such as hybrid unsymmetrical cross multi-hexagongrid search and a novel multidirectional gradient descent search evidently.展开更多
In this paper, a Modified Complex Lapped Transform domain Motion Estimation (MCLT-ME) method to estimate the motion of video sequence is proposed. The proposed method is based on phase correlation of current window re...In this paper, a Modified Complex Lapped Transform domain Motion Estimation (MCLT-ME) method to estimate the motion of video sequence is proposed. The proposed method is based on phase correlation of current window region and corresponding window region, and provides a significant improvement in motion estimation.展开更多
Motion Estimation (ME) is considerate one of the most important compression methods. However, ME involves high computational complexity. The main goal is to reduce power conception and the execution time without red...Motion Estimation (ME) is considerate one of the most important compression methods. However, ME involves high computational complexity. The main goal is to reduce power conception and the execution time without reducing image quality. In this paper, the authors have proposed high parallel processing architecture is presented for four-step search block-matching motion estimation. The proposed method is based on the stoppable clock models. The architecture has been simulated and synthesized with VHDL and ASIC (CMOS 45 nm). Synthesize results show that the proposed architecture reduces the power consumption and achieves a high performance for real time motion estimation.展开更多
This paper presents a novel technique for embedding a digital watermark into video frames based on motion vectors and discrete wavelet transform (DWT). In the proposed scheme, the binary image watermark is divided int...This paper presents a novel technique for embedding a digital watermark into video frames based on motion vectors and discrete wavelet transform (DWT). In the proposed scheme, the binary image watermark is divided into blocks and each watermark block is embedded several times in each selected video frame at different locations. The block-based motion estimation algorithm is used to select the video frame blocks having the greatest motion vectors magnitude. The DWT is applied to the selected frame blocks, and then, the watermark block is hidden into these blocks by modifying the coefficients of the Horizontal sub-bands (HL). Adding the watermark at different locations in the same video frame makes the scheme more robust against different types of attacks. The method was tested on different types of videos. The average peak signal to noise ratio (PSNR) and the normalized correlation (NC) are used to measure the performance of the proposed method. Experimental results show that the proposed algorithm does not affect the visual quality of video frames and the scheme is robust against a variety of attacks.展开更多
Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. As a case study, motion capture ...Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. As a case study, motion capture of a free flying Manduca sexta, also known as hawkmoth, is considered by using three synchronized high-speed cameras. A solid finite element (FE) representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. One of the original aspects of this work is the formulation of an objective function and the use of shadow matching and strain-energy regularization. With this objective function, the authors penalize the projection differences between silhouettes of the captured images and the FE representation of the deformed body. The process and procedures undertaken to go from high-speed videography to motion estimation are discussed, and snapshots of representative results are presented. Finally, the captured free-flight motion is also characterized and quantified.展开更多
The new features of H. 264 video coding standard make the motion estimation module much more time consuming than before. Especially, the motion search is required for each of the 4 modes for inter prediction. In order...The new features of H. 264 video coding standard make the motion estimation module much more time consuming than before. Especially, the motion search is required for each of the 4 modes for inter prediction. In order to reduce the computational complexity, we analyze the statistics of results of motion estimation, such as the continuity of best modes of blocks in successive frames and the chance to give up a sub-partition mode (smaller than 16 × 16) after integer-pixel motion estimation, from which we suggest to make mode prediction based on the motion information of the previous frame and skip sub-pixel motion estimation in subpartition mode selectively. According to the experimental result, the proposed algorithm can save 75 % of the computational time with a slight degradation (0.03 dB) on PSNR compared with the pseudocode of fast search motion estimation in JM12.2.展开更多
A novel fast sub-pixel search algorithm is proposed to accelerate sub-pixel search. Based on the features of predicted motion vector (PMV) and texture direction observed, the proposed method effectively filters out im...A novel fast sub-pixel search algorithm is proposed to accelerate sub-pixel search. Based on the features of predicted motion vector (PMV) and texture direction observed, the proposed method effectively filters out impossible points and thus decreases 11 searched points in average during the sub-pixel search stage. A threshold is also adopted to early terminate the sub-pixel search. Simulation results show that the proposed method can achieve up to 4.8 times faster than full sub-pixel motion search scheme (FSPS) with less than 0.025 dB PSNR losses and 2.2% bit-length increases.展开更多
An adaptive de-interlacing algorithm based on motion compensation is presented. It consists of the detection of motion blocks, the adaptive motion estimation with Kalman filtering, and the motion compensation for moti...An adaptive de-interlacing algorithm based on motion compensation is presented. It consists of the detection of motion blocks, the adaptive motion estimation with Kalman filtering, and the motion compensation for motion blocks and field repetition for static blocks. The detection of motion blocks can accurately identify the motion blocks by using successive 4-field images. The motion estimation module with Kalman filtering searches motion vectors only for motion blocks, and the search model is adaptive to motion velocity and acceleration. Two de-interlacing methods are adopted to satisfy the different requirements of motion blocks and static blocks. Compared with full search algorithm, the proposed algorithm greatly reduces the computational amount while keeping the performance approximately.展开更多
This paper presents a new approach to the extraction of a moving object from video sequence. The method is based on morphological motion filter using connected operator and a proposed new filtering criterion. The morp...This paper presents a new approach to the extraction of a moving object from video sequence. The method is based on morphological motion filter using connected operator and a proposed new filtering criterion. The morphological motion filter aims to detect motion which is distinct from that of the background, and thereby locates independently moving physical objects in the scenes. Experiments show that the algorithm can extract object from moving backgrounds efficiently.展开更多
基金supported by the National Natural Science Foundation of China (No.52394252)the Postdoctoral Fellowship Program of CPSF (No.GZC20232497)+2 种基金the Key Research and Development Program of Shandong Province,China (No.2021ZLGX04)the Shandong Postdoctoral Science Foundation (No.SDBX2023012)the Qingdao Postdoctoral Program Grant (No.QDBSH20230202009)。
文摘Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater target detection.Polarization imaging can reduce the influence of backscattered light and obtain high-quality images underwater.The optical flow shows the motion and structural information of the target.We use polarized optical flow to obtain the optical flow field and estimate the target motion.The experimental results of different targets under varying water turbidity levels illustrate that our method is realizable and robust.The precision is verified by comparing the results with the precise displacement data and calculating two error measures.The proposed method based on polarized optical flow can obtain accurate displacement information and a good recognition effect.Moving target segmentation based on the Otsu method further proves the superiority of the polarized optical flow under turbid water.This study is valuable for target detection and motion estimation in scattering environments.
基金The National Natural Science Foundation of China(No.60574006)
文摘A novel and effective approach to global motion estimation and moving object extraction is proposed. First, the translational motion model is used because of the fact that complex motion can be decomposed as a sum of translational components. Then in this application, the edge gray horizontal and vertical projections are used as the block matching feature for the motion vectors estimation. The proposed algorithm reduces the motion estimation computations by calculating the onedimensional vectors rather than the two-dimensional ones. Once the global motion is robustly estimated, relatively stationary background can be almost completely eliminated through the inter-frame difference method. To achieve an accurate object extraction result, the higher-order statistics (HOS) algorithm is used to discriminate backgrounds and moving objects. Experimental results validate that the proposed method is an effective way for global motion estimation and object extraction.
文摘An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence.
基金supported in part by the National Natural Science Foundation of China(Nos.42271448,41701531)the Key Laboratory of Land Satellite Remote Sensing Application,Ministry of Natural Resources of the People’s Republic of China(No.KLSMNRG202317)。
文摘Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a parameter estimation model of the boost phase based on trajectory plane parametric cutting.The use of the plane passing through the geo-center and the cutting sequence line of sight(LOS)generates the trajectory-cutting plane.With the coefficient of the trajectory cutting plane directly used as the parameter to be estimated,a motion parameter estimation model in space non-cooperative targets is established,and the Gauss-Newton iteration method is used to solve the flight parameters.The experimental results show that the estimation algorithm proposed in this paper weakly relies on prior information and has higher estimation accuracy,providing a practical new idea and method for the parameter estimation of space non-cooperative targets under single-satellite warning.
基金National Natural Science Foundation of China (No.50275040)
文摘A new motion model and estimation algorithm is proposed to compute the general rigid motion object's 6-DOF motion parameters and center of rotation based on stereo vision. The object's 6-DOF motion model is designed from the rigid object's motion character under the two defined reference frames. According to the rigid object's motion model and motion dynamics knowledge, the corresponding motion algorithm to compute the 6-DOF motion parameters is worked out. By the rigid object pure rotation motion model and space sphere geometry knowledge, the center of rotation may be calculated after eliminating the translation motion out of the 6-DOF motion. The motion equations are educed based on the motion model and the closed-form solutions are figured out. To heighten the motion estimation algorithm's robust, RANSAC algorithm is applied to delete the outliers. Simulation and real experiments are conducted and the experiment results are analyzed. The results prove the motion model's correction and algorithm's validity.
基金Project(2012CB720003)supported by the National Basic Research Program of ChinaProjects(61320106010,61127007,61121003,61573019)supported by the National Natural Science Foundation of ChinaProject(2013DFE13040)supported by the Special Program for International Science and Technology Cooperation from Ministry of Science and Technology of China
文摘Because of its characteristics of simple algorithm and hardware, optical flow-based motion estimation has become a hot research field, especially in GPS-denied environment. Optical flow could be used to obtain the aircraft motion information, but the six-(degree of freedom)(6-DOF) motion still couldn't be accurately estimated by existing methods. The purpose of this work is to provide a motion estimation method based on optical flow from forward and down looking cameras, which doesn't rely on the assumption of level flight. First, the distribution and decoupling method of optical flow from forward camera are utilized to get attitude. Then, the resulted angular velocities are utilized to obtain the translational optical flow of the down camera, which can eliminate the influence of rotational motion on velocity estimation. Besides, the translational motion estimation equation is simplified by establishing the relation between the depths of feature points and the aircraft altitude. Finally, simulation results show that the method presented is accurate and robust.
文摘In this paper,we propose a novel adjustable multiple cross-hexagonal search(AMCHS) algorithm for fast block motion estimation. It employs adjustable multiple cross search patterns(AMCSP) in the first step and then uses half-way-skip and half-way-stop technique to determine whether to employ two hexagonal search patterns(HSPs) subsequently. The AMCSP can be used to find small motion vectors efficiently while the HSPs can be used to find large ones accurately to ensure prediction quality. Simulation results showed that our proposed AMCHS achieves faster search speed,and provides better distortion performance than other popular fast search algorithms,such as CDS and CDHS.
基金Supported by the National Natural Science Foundation of China (No. 60803036)the Scientific Research Fund of Heilongjiang Provincial Education Department (No.11531013)
文摘Aiming at the higher bit-rate occupation of motion vector encoding and more time load of full-searching strategies, a multi-resolution motion estimation and compensation algorithm based on adjacent prediction of frame difference was proposed.Differential motion detection was employed to image sequences and proper threshold was adopted to identify the connected region.Then the motion region was extracted to carry out motion estimation and motion compensation on it.The experiment results show that the encoding efficiency of motion vector is promoted, the complexity of motion estimation is reduced and the quality of the reconstruction image at the same bit-rate as Multi-Resolution Motion Estimation(MRME) is improved.
文摘In the field of predictive video coding and format conversion, there is an increasing attention towards estimation of the true inter-frame motion. The restoration of motion vector field computed by 3-D RS is addressed and a propagating adaptive-weighted vector median (PAWVM) post-filter is proposed. This approach decomposes blocks to make a better estimation on object borders and propagates good vectors in the scanning direction. Furthermore, a hard-thresholding method is introduced into calculating vector weights to improve the propagating. By exploiting both the spatial correlation of the vector field and the matching error of candidate vectors, PAWVM makes a good balance between the smoothness of vector field and the prediction error, and the output vector field is more valid to reflect the true motion.
基金Project (No. 2006J0017) supported by the Natural Science Foundation of Fujian Province, China
文摘Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry. A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the panicle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF.
基金Sponsored by the National Defense Pre-Research Foundation of China
文摘A correlation tracking algorithm based on template partition motion estimation proposed for improving real time performance of the conventional correlation matching algorithms. The target trajectory fitted using the least square with equal space in whole interval and the target prediction point is found out. According to the requirements of block motion estimation(BME) algorithm,the template divided into some macro blocks. The searching process is conducted by using diamond search algorithm around the prediction point and the optimal motion vector of each block is calculated. A point corresponding to the motion vector with the best matching is taken as a rough matching point of the template. The relation of relative position between the block with matching point and the searching area determined to decide whether to conduct precise matching search or to construct a new search area in the gradient direction. The target tracking experiment results show that over 70% time cost can be reduced caompared with the conventional correlation matching algorithm based on full search method.
基金supported by the National Natural Science Foundation of China (60902101)Fundmental Research Foundation of North-western Polytechnical University (JC200913)
文摘H.264/AVC video coding standard can achieve roughly half of the bit-savings over MPEG2 and MPEG4 for a given quality. However, this comes at a cost in considerably increased complexity at the encoder and thus increases the difficulty in hardware implementation. The high redundancy that exists between the successive frames of a video sequence makes it possible to achieve a high data compression ratio. Motion estimation (ME) plays an important role in motion compensated video coding. A fast motion estimation algorithm for H.264/AVC is proposed based on centered prediction, called centered prediction based fast mixed search algorithm (CPFMS). It makes use of the spatial and temporal correlation in motion vector (MV) fields and feature of all-zero blocks to accelerate the searching process. With the initialized searching point prediction, adaptive search window changing and searching direction decision, CPFMS is provided to reduce computation in block-matching process. The experimental results show that the speed of CPFMS is nearly 12 times of FS with a negligible peak signal-noise ratio (PSNR) loss. Also, the efficiency of CPFMS outperforms some popular fast algorithms such as hybrid unsymmetrical cross multi-hexagongrid search and a novel multidirectional gradient descent search evidently.
文摘In this paper, a Modified Complex Lapped Transform domain Motion Estimation (MCLT-ME) method to estimate the motion of video sequence is proposed. The proposed method is based on phase correlation of current window region and corresponding window region, and provides a significant improvement in motion estimation.
文摘Motion Estimation (ME) is considerate one of the most important compression methods. However, ME involves high computational complexity. The main goal is to reduce power conception and the execution time without reducing image quality. In this paper, the authors have proposed high parallel processing architecture is presented for four-step search block-matching motion estimation. The proposed method is based on the stoppable clock models. The architecture has been simulated and synthesized with VHDL and ASIC (CMOS 45 nm). Synthesize results show that the proposed architecture reduces the power consumption and achieves a high performance for real time motion estimation.
文摘This paper presents a novel technique for embedding a digital watermark into video frames based on motion vectors and discrete wavelet transform (DWT). In the proposed scheme, the binary image watermark is divided into blocks and each watermark block is embedded several times in each selected video frame at different locations. The block-based motion estimation algorithm is used to select the video frame blocks having the greatest motion vectors magnitude. The DWT is applied to the selected frame blocks, and then, the watermark block is hidden into these blocks by modifying the coefficients of the Horizontal sub-bands (HL). Adding the watermark at different locations in the same video frame makes the scheme more robust against different types of attacks. The method was tested on different types of videos. The average peak signal to noise ratio (PSNR) and the normalized correlation (NC) are used to measure the performance of the proposed method. Experimental results show that the proposed algorithm does not affect the visual quality of video frames and the scheme is robust against a variety of attacks.
基金Support received for this project from the US National Science Foundation (Grant CMMI-1250187)the US Air Force Office of Scientific Research (Grant FA95501510134) is gratefully acknowledged
文摘Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. As a case study, motion capture of a free flying Manduca sexta, also known as hawkmoth, is considered by using three synchronized high-speed cameras. A solid finite element (FE) representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. One of the original aspects of this work is the formulation of an objective function and the use of shadow matching and strain-energy regularization. With this objective function, the authors penalize the projection differences between silhouettes of the captured images and the FE representation of the deformed body. The process and procedures undertaken to go from high-speed videography to motion estimation are discussed, and snapshots of representative results are presented. Finally, the captured free-flight motion is also characterized and quantified.
基金Sponsored by the National Natural Science Foundation of China(60772066)
文摘The new features of H. 264 video coding standard make the motion estimation module much more time consuming than before. Especially, the motion search is required for each of the 4 modes for inter prediction. In order to reduce the computational complexity, we analyze the statistics of results of motion estimation, such as the continuity of best modes of blocks in successive frames and the chance to give up a sub-partition mode (smaller than 16 × 16) after integer-pixel motion estimation, from which we suggest to make mode prediction based on the motion information of the previous frame and skip sub-pixel motion estimation in subpartition mode selectively. According to the experimental result, the proposed algorithm can save 75 % of the computational time with a slight degradation (0.03 dB) on PSNR compared with the pseudocode of fast search motion estimation in JM12.2.
基金Supported by Electronic Information Industry Foundation of China (No.[2005]635) .
文摘A novel fast sub-pixel search algorithm is proposed to accelerate sub-pixel search. Based on the features of predicted motion vector (PMV) and texture direction observed, the proposed method effectively filters out impossible points and thus decreases 11 searched points in average during the sub-pixel search stage. A threshold is also adopted to early terminate the sub-pixel search. Simulation results show that the proposed method can achieve up to 4.8 times faster than full sub-pixel motion search scheme (FSPS) with less than 0.025 dB PSNR losses and 2.2% bit-length increases.
文摘An adaptive de-interlacing algorithm based on motion compensation is presented. It consists of the detection of motion blocks, the adaptive motion estimation with Kalman filtering, and the motion compensation for motion blocks and field repetition for static blocks. The detection of motion blocks can accurately identify the motion blocks by using successive 4-field images. The motion estimation module with Kalman filtering searches motion vectors only for motion blocks, and the search model is adaptive to motion velocity and acceleration. Two de-interlacing methods are adopted to satisfy the different requirements of motion blocks and static blocks. Compared with full search algorithm, the proposed algorithm greatly reduces the computational amount while keeping the performance approximately.
文摘This paper presents a new approach to the extraction of a moving object from video sequence. The method is based on morphological motion filter using connected operator and a proposed new filtering criterion. The morphological motion filter aims to detect motion which is distinct from that of the background, and thereby locates independently moving physical objects in the scenes. Experiments show that the algorithm can extract object from moving backgrounds efficiently.