With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices,crowdsensing systems in the Internet of Things(IoT)are now conducting complicated video analy...With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices,crowdsensing systems in the Internet of Things(IoT)are now conducting complicated video analysis tasks such as behaviour recognition.These applications have dramatically increased the diversity of IoT systems.Specifically,behaviour recognition in videos usually requires a combinatorial analysis of the spatial information about objects and information about their dynamic actions in the temporal dimension.Behaviour recognition may even rely more on the modeling of temporal information containing short-range and long-range motions,in contrast to computer vision tasks involving images that focus on understanding spatial information.However,current solutions fail to jointly and comprehensively analyse short-range motions between adjacent frames and long-range temporal aggregations at large scales in videos.In this paper,we propose a novel behaviour recognition method based on the integration of multigranular(IMG)motion features,which can provide support for deploying video analysis in multimedia IoT crowdsensing systems.In particular,we achieve reliable motion information modeling by integrating a channel attention-based short-term motion feature enhancement module(CSEM)and a cascaded long-term motion feature integration module(CLIM).We evaluate our model on several action recognition benchmarks,such as HMDB51,Something-Something and UCF101.The experimental results demonstrate that our approach outperforms the previous state-of-the-art methods,which confirms its effective-ness and efficiency.展开更多
An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algor...An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence.展开更多
A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descrip...A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descriptor (MFD) is designed to describe motion feature of each block in a picture based on motion intensity, motion in occlusion areas, and motion correlation among neighbouring blocks. Then, a fuzzy C-means clustering algorithm (FCM) is implemented based on those MFDs so as to segment moving objects. Moreover, a new parameter named as gathering degree is used to distinguish foreground moving objects and background motion. Experimental results demonstrate the effectiveness of the proposed method.展开更多
Feature selection is always an important issue in the visual SLAM (simultaneous location and mapping) literature. Considering that the location estimation can be improved by tracking features with larger value of vi...Feature selection is always an important issue in the visual SLAM (simultaneous location and mapping) literature. Considering that the location estimation can be improved by tracking features with larger value of visible time, a new feature selection method based on motion estimation is proposed. First, a k-step iteration algorithm is presented for visible time estimation using an affme motion model; then a delayed feature detection method is introduced for efficiently detecting features with the maximum visible time. As a means of validation for the proposed method, both simulation and real data experiments are carded out. Results show that the proposed method can improve both the estimation performance and the computational performance compared with the existing random feature selection method.展开更多
To improve the recognition performance of video human actions,an approach that models the video actions in a hierarchical way is proposed. This hierarchical model summarizes the action contents with different spatio-t...To improve the recognition performance of video human actions,an approach that models the video actions in a hierarchical way is proposed. This hierarchical model summarizes the action contents with different spatio-temporal domains according to the properties of human body movement.First,the temporal gradient combined with the constraint of coherent motion pattern is utilized to extract stable and dense motion features that are viewed as point features,then the mean-shift clustering algorithm with the adaptive scale kernel is used to label these features.After pooling the features with the same label to generate part-based representation,the visual word responses within one large scale volume are collected as video object representation.On the benchmark KTH(Kungliga Tekniska H?gskolan)and UCF (University of Central Florida)-sports action datasets,the experimental results show that the proposed method enhances the representative and discriminative power of action features, and improves recognition rates.Compared with other related literature,the proposed method obtains superior performance.展开更多
A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated ...A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch, the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filteration. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational, and zooming jitter and robust to local motions.展开更多
在多目标跟踪任务中,外界噪声的干扰会导致传统方法的系统建模不可靠,从而降低目标位置预测的准确性;而密集人群引起的拥挤和遮挡问题则会严重影响目标外观的可靠性,导致错误的身份关联.为了解决这些问题,本文提出一种多目标跟踪算法Ecs...在多目标跟踪任务中,外界噪声的干扰会导致传统方法的系统建模不可靠,从而降低目标位置预测的准确性;而密集人群引起的拥挤和遮挡问题则会严重影响目标外观的可靠性,导致错误的身份关联.为了解决这些问题,本文提出一种多目标跟踪算法Ecsort.该算法在传统运动预测的基础上,引入噪声补偿模块,降低噪声干扰引起的误差,提高位置预测的准确性.其次,引入特征相似度匹配模块,通过学习目标的判别性外观特征,并结合运动线索和判别性外观特征的优势,从而实现精确的身份关联.通过在多目标跟踪基准数据集上进行的大量实验结果表明,与基线模型相比,该方法在MOT17测试集上的IDF1 (ID F1 score)、HOTA (higher order tracking accuracy)、AssA(association accuracy)、DetA (detection accuracy)分别提高了1.1%、0.5%、0.6%、0.3%,在MOT20测试集上的IDF1、HOTA、AssA、DetA分别提高了2.3%、1.9%、3.4%、0.2%.展开更多
基金supported by National Natural Science Foundation of China under grant No.62271125,No.62273071Sichuan Science and Technology Program(No.2022YFG0038,No.2021YFG0018)+1 种基金by Xinjiang Science and Technology Program(No.2022273061)by the Fundamental Research Funds for the Central Universities(No.ZYGX2020ZB034,No.ZYGX2021J019).
文摘With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices,crowdsensing systems in the Internet of Things(IoT)are now conducting complicated video analysis tasks such as behaviour recognition.These applications have dramatically increased the diversity of IoT systems.Specifically,behaviour recognition in videos usually requires a combinatorial analysis of the spatial information about objects and information about their dynamic actions in the temporal dimension.Behaviour recognition may even rely more on the modeling of temporal information containing short-range and long-range motions,in contrast to computer vision tasks involving images that focus on understanding spatial information.However,current solutions fail to jointly and comprehensively analyse short-range motions between adjacent frames and long-range temporal aggregations at large scales in videos.In this paper,we propose a novel behaviour recognition method based on the integration of multigranular(IMG)motion features,which can provide support for deploying video analysis in multimedia IoT crowdsensing systems.In particular,we achieve reliable motion information modeling by integrating a channel attention-based short-term motion feature enhancement module(CSEM)and a cascaded long-term motion feature integration module(CLIM).We evaluate our model on several action recognition benchmarks,such as HMDB51,Something-Something and UCF101.The experimental results demonstrate that our approach outperforms the previous state-of-the-art methods,which confirms its effective-ness and efficiency.
文摘An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence.
基金Supported by the National Natural Science Foundation of China (No. 60772134, 60902081, 60902052) the 111 Project (No.B08038) the Fundamental Research Funds for the Central Universities(No.72105457).
文摘A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descriptor (MFD) is designed to describe motion feature of each block in a picture based on motion intensity, motion in occlusion areas, and motion correlation among neighbouring blocks. Then, a fuzzy C-means clustering algorithm (FCM) is implemented based on those MFDs so as to segment moving objects. Moreover, a new parameter named as gathering degree is used to distinguish foreground moving objects and background motion. Experimental results demonstrate the effectiveness of the proposed method.
文摘Feature selection is always an important issue in the visual SLAM (simultaneous location and mapping) literature. Considering that the location estimation can be improved by tracking features with larger value of visible time, a new feature selection method based on motion estimation is proposed. First, a k-step iteration algorithm is presented for visible time estimation using an affme motion model; then a delayed feature detection method is introduced for efficiently detecting features with the maximum visible time. As a means of validation for the proposed method, both simulation and real data experiments are carded out. Results show that the proposed method can improve both the estimation performance and the computational performance compared with the existing random feature selection method.
基金The National Natural Science Foundation of China(No.60971098,61201345)
文摘To improve the recognition performance of video human actions,an approach that models the video actions in a hierarchical way is proposed. This hierarchical model summarizes the action contents with different spatio-temporal domains according to the properties of human body movement.First,the temporal gradient combined with the constraint of coherent motion pattern is utilized to extract stable and dense motion features that are viewed as point features,then the mean-shift clustering algorithm with the adaptive scale kernel is used to label these features.After pooling the features with the same label to generate part-based representation,the visual word responses within one large scale volume are collected as video object representation.On the benchmark KTH(Kungliga Tekniska H?gskolan)and UCF (University of Central Florida)-sports action datasets,the experimental results show that the proposed method enhances the representative and discriminative power of action features, and improves recognition rates.Compared with other related literature,the proposed method obtains superior performance.
基金the National Natural Science Foundation (60572152) of China and Science Foundation ofShaanxi Province (2005F26)
文摘A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch, the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filteration. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational, and zooming jitter and robust to local motions.
文摘在多目标跟踪任务中,外界噪声的干扰会导致传统方法的系统建模不可靠,从而降低目标位置预测的准确性;而密集人群引起的拥挤和遮挡问题则会严重影响目标外观的可靠性,导致错误的身份关联.为了解决这些问题,本文提出一种多目标跟踪算法Ecsort.该算法在传统运动预测的基础上,引入噪声补偿模块,降低噪声干扰引起的误差,提高位置预测的准确性.其次,引入特征相似度匹配模块,通过学习目标的判别性外观特征,并结合运动线索和判别性外观特征的优势,从而实现精确的身份关联.通过在多目标跟踪基准数据集上进行的大量实验结果表明,与基线模型相比,该方法在MOT17测试集上的IDF1 (ID F1 score)、HOTA (higher order tracking accuracy)、AssA(association accuracy)、DetA (detection accuracy)分别提高了1.1%、0.5%、0.6%、0.3%,在MOT20测试集上的IDF1、HOTA、AssA、DetA分别提高了2.3%、1.9%、3.4%、0.2%.