The objective of this study is to experimentally visualize traveling vortices in the boundary layer on a rotating disk under orbital motion. The orbital radius is half of the disk’s diameter (200 mm) and the maximum ...The objective of this study is to experimentally visualize traveling vortices in the boundary layer on a rotating disk under orbital motion. The orbital radius is half of the disk’s diameter (200 mm) and the maximum speed of orbital motion is 500 revolutions per minute. The Reynolds number in the pure-rotation case is 2.77 × 105. The characteristics of two types of traveling vortices are visualized by a smoke-wire method. The first type is transition vortices. In the pure-rotation case, they arise at circumferentially equal intervals, and are not traveling but stationary relative to the rotational disk. The result of visualization of this type shows that the intervals between transient vortices change in a circumferential direction, or in an orbital radial direction, on the rotating disk under orbital motion. The second type is new arc-shaped vortices that correspond to low-frequency disturbances. As orbital speed increases, the radial traveling velocities of the low-frequency disturbances increase and the intervals between low-frequency disturbances decrease.展开更多
This paper summarizes a few cases of spacecraft orbital motion around asteroid for which averaging method can be applied, i.e., when central body rotates slowly, fast, and when a spacecraft is near to the resonant orb...This paper summarizes a few cases of spacecraft orbital motion around asteroid for which averaging method can be applied, i.e., when central body rotates slowly, fast, and when a spacecraft is near to the resonant orbits between the spacecraft mean motion and the central body's rotation. Averaging conditions for these cases are given. As a major extension, a few classes of near resonant orbits are analyzed by the averaging method. Then some resulted conclusions of these averaging analyses are applied to understand the stabil- ity regions in a numerical experiment. Some stability conclu- sions are obtained. As a typical example, it is shown in detail that near circular 1 : 2 resonant orbit is always unstable.展开更多
Since the concept of Nongravitational Force (hereafter NF) was first proposed a century and a half ago, different models of it have been suggested and being modified. Its effect on the orbital motions of comets has be...Since the concept of Nongravitational Force (hereafter NF) was first proposed a century and a half ago, different models of it have been suggested and being modified. Its effect on the orbital motions of comets has been studied. Especially, some researchers have attempted to draw some inclues of the physical nature of the cometary nucleus from the NF parameters. In this paper, we try to give a concise review about the different models of NF and their effects on orbit computation. And then, we will try to detect whether there is nongravitational effect on Comet Hale-Bopp’s orbital motion using Style II NF model.展开更多
In this paper, the phenomena of Earth’s motion about its own axis, the ecliptic plane of the Earth’s orbit around the Sun, the definitions of equinoxes, the precession of equinoxes, Earth’s wobble and other astrono...In this paper, the phenomena of Earth’s motion about its own axis, the ecliptic plane of the Earth’s orbit around the Sun, the definitions of equinoxes, the precession of equinoxes, Earth’s wobble and other astronomical terminology are briefly described. Some of the existing theories explaining the precession of equinox and their inadequacies are brought out. New Hypothesis is that precession of equinoxes is a direct result of Orbital spin of Earth in a retrograde direction—a celestial phenomenon similar to that of Moon’s Orbital spin around the Earth. The study of Moon’s orbit round the Earth reveals the exact movement of Earth’s orbit, which causes precession of equinoxes without any ambiguity. The analogy presented herein demonstrates the plausible hypothesis.展开更多
We examine 14 plates of the globular cluster M3 (NGC 5272) taken with the 40 cm refractor at the Sheshan station of Shanghai Astronomical Observatory. The plates span over a period of about 77 years. The positions and...We examine 14 plates of the globular cluster M3 (NGC 5272) taken with the 40 cm refractor at the Sheshan station of Shanghai Astronomical Observatory. The plates span over a period of about 77 years. The positions and absolute proper motions of eight stars in the Hipparcos Catalogue and of 49 stars in the Tycho-2 Catalogue are used as the reference frame. The astrometric reduction is made with the central overlapping principle. The absolute proper motions of 534 stars in a region of about 100' × 100' around the cluster are measured. With the new proper motion data the membership probabilities of the stars are determined. The average absolute proper motion obtained for the cluster is -0.06±0.30 mas yr-1 in R.A. and -2.6±0.30 mas yr-1 in Decl. By combining this result with the known distance and radial velocity of the cluster, we also obtained the Galactic orbit of M3 for a chosen three-component Galactic potential.展开更多
We have obtained the absolute proper motion of globular cluster M3 from measurements of 14 plates taken with the 40cm refractor at Sheshan station of Shanghai observatory, spanning epoch is about 80 years. The positio...We have obtained the absolute proper motion of globular cluster M3 from measurements of 14 plates taken with the 40cm refractor at Sheshan station of Shanghai observatory, spanning epoch is about 80 years. The positions and absolute proper motions of 24 stars in ACT catalogue are used as the reference frame. The reduction was made with the central overlapping principle. The absolute proper motions of 534 stars in the region of about 1° 5×1° 5 around the cluster M3 are determined. With the new data of proper motions, the membership probabilities of the stars are determined. The mean absolute proper motions for the cluster of -0 3±0 3 mas/yr in R.A. and -3 1±0 3 mas/yr in Dec. were obtained.Combining our results with the known distance and radial velocity of the cluster, we obtained its space motions and Galactic orbits in two different three component Galactic potentials.展开更多
Fluid particles in translating surface gravity waves have an orbital motion which decreases in size with increasing mean depth. These wave characteristics came from observations and were not forecast theoretically. Th...Fluid particles in translating surface gravity waves have an orbital motion which decreases in size with increasing mean depth. These wave characteristics came from observations and were not forecast theoretically. The classical potential flow model is incapable of explaining the particle movement due to the irrotational assumption and to a flaw in carrying out the method. When a wave passes by an observer from left to right, the particles move clockwise under a crest and a trough. This correct conclusion is consistent with what the incorrect standard theory implies but should not be considered to have been derived from it.展开更多
Spacecraft formation flying is an attractive new concept in international aeronautic fields because of its powerful functions and low cost. In this paper, the formation design and PD closed-loop control of spacecraft ...Spacecraft formation flying is an attractive new concept in international aeronautic fields because of its powerful functions and low cost. In this paper, the formation design and PD closed-loop control of spacecraft formation flying in elliptical orbits are discussed. Based on two-body relative dynamics, the true anomaly is applied as independent variable instead of the variable of time. Since the apogee is considered as the starting point, the six integrating constants are calculated. Therefore, the algebraic solution is obtained for the relative motion in elliptical orbits. Moreover, the formation design is presented and both circular formation and line formation are provided in terms of an algebraic solution. This paper also discusses the PD-closed loop control for precise formation control in elliptical orbits. In this part, the error-type state equation is put forward and the linear quadratic regulator (LQR) method is used to calculate PD parameters. Though the gain matrix calculated from LQR is time-variable because the error-type state equation is time variable, the PD parameters are also considered as constants because of their small changes in simulation. Finally, taking circular formation as an example, the initial orbital elements are achieved for three secondary spacecraft. And the numerical simulation is analyzed under PD formation control with initial errors and J2 perturbation. The simulation results demonstrate the validity of PD closed-loop control scheme.展开更多
The paper investigates the relative motion around the planetary displaced orbit. Several kinds of displaced orbits for geocentric and martian cases were discussed. First, the relative motion was linearized around the ...The paper investigates the relative motion around the planetary displaced orbit. Several kinds of displaced orbits for geocentric and martian cases were discussed. First, the relative motion was linearized around the displaced orbits. Then, two seminatural control laws were investigated for each kind of orbit and the stable regions were obtained for each case. One of the two control laws is the passive control law that is very attractive for engineering practice. However, the two control laws are not very suitable for the Martian mission. Another special semi-natural control law is designed based on the requirement of the Martian mission. The results show that large stable regions exist for the control law.展开更多
Dynamical behavior of nonlinear oscillator under combined parametric and forcing excitation, which includes yon der Pol damping, is very complex. In this paper, Melnikov's method is used to study the heteroclinic ...Dynamical behavior of nonlinear oscillator under combined parametric and forcing excitation, which includes yon der Pol damping, is very complex. In this paper, Melnikov's method is used to study the heteroclinic orbit bifurcations, subharmonic bifurcations and chaos in this system. Smale horseshoes and chaotic motions can occur from odd subharmonic bifurcation of infinite order in this system-far various resonant cases finally the numerical computing method is used to study chaotic motions of this system. The results achieved reveal some new phenomena.展开更多
The relative motion between multiple satellites is a developed technique with many applications. Formation-flying missions use the relative motion dynamics in their design. In this work, the motion in invariant relati...The relative motion between multiple satellites is a developed technique with many applications. Formation-flying missions use the relative motion dynamics in their design. In this work, the motion in invariant relative orbits is considered under the effects of second-order zonal harmonics in an equatorial orbit. The Hamiltonian framework is used to formulate the problem. All the possible conditions of the invariant relative motion are obtained with different inclinations of the follower satellite orbits. These second-order conditions warrantee the drift rates keeping two, or more, neighboring orbits from drifting apart. The conditions have been modeled. All the possibilities of choosing mean elements of the leader satellite orbit and differences in momenta between leader and follower satellites’ orbits are presented.展开更多
In this paper we calculate the volume, mass, gravitational attraction to the Earth, angular momentum the orbit of the Trojan asteroid (TK7) [1]. In this paper, we use classical Newtonian mechanics to analyse some of t...In this paper we calculate the volume, mass, gravitational attraction to the Earth, angular momentum the orbit of the Trojan asteroid (TK7) [1]. In this paper, we use classical Newtonian mechanics to analyse some of the physical and orbital properties of the Trojan asteroid, which are still experimentally unknown. The asteroid should remain in Earth’s orbit for the next 100 years. We conclude by providing informed estimates of 2010 TK7’s yet unknown physical properties: i.e. mass, volume, gravitational attraction to Earth and angular momentum.展开更多
文摘The objective of this study is to experimentally visualize traveling vortices in the boundary layer on a rotating disk under orbital motion. The orbital radius is half of the disk’s diameter (200 mm) and the maximum speed of orbital motion is 500 revolutions per minute. The Reynolds number in the pure-rotation case is 2.77 × 105. The characteristics of two types of traveling vortices are visualized by a smoke-wire method. The first type is transition vortices. In the pure-rotation case, they arise at circumferentially equal intervals, and are not traveling but stationary relative to the rotational disk. The result of visualization of this type shows that the intervals between transient vortices change in a circumferential direction, or in an orbital radial direction, on the rotating disk under orbital motion. The second type is new arc-shaped vortices that correspond to low-frequency disturbances. As orbital speed increases, the radial traveling velocities of the low-frequency disturbances increase and the intervals between low-frequency disturbances decrease.
基金partially supported by an innovation fund from Chinese academy of space technology and a grant from the Jet Propulsion Laboratory
文摘This paper summarizes a few cases of spacecraft orbital motion around asteroid for which averaging method can be applied, i.e., when central body rotates slowly, fast, and when a spacecraft is near to the resonant orbits between the spacecraft mean motion and the central body's rotation. Averaging conditions for these cases are given. As a major extension, a few classes of near resonant orbits are analyzed by the averaging method. Then some resulted conclusions of these averaging analyses are applied to understand the stabil- ity regions in a numerical experiment. Some stability conclu- sions are obtained. As a typical example, it is shown in detail that near circular 1 : 2 resonant orbit is always unstable.
文摘Since the concept of Nongravitational Force (hereafter NF) was first proposed a century and a half ago, different models of it have been suggested and being modified. Its effect on the orbital motions of comets has been studied. Especially, some researchers have attempted to draw some inclues of the physical nature of the cometary nucleus from the NF parameters. In this paper, we try to give a concise review about the different models of NF and their effects on orbit computation. And then, we will try to detect whether there is nongravitational effect on Comet Hale-Bopp’s orbital motion using Style II NF model.
文摘In this paper, the phenomena of Earth’s motion about its own axis, the ecliptic plane of the Earth’s orbit around the Sun, the definitions of equinoxes, the precession of equinoxes, Earth’s wobble and other astronomical terminology are briefly described. Some of the existing theories explaining the precession of equinox and their inadequacies are brought out. New Hypothesis is that precession of equinoxes is a direct result of Orbital spin of Earth in a retrograde direction—a celestial phenomenon similar to that of Moon’s Orbital spin around the Earth. The study of Moon’s orbit round the Earth reveals the exact movement of Earth’s orbit, which causes precession of equinoxes without any ambiguity. The analogy presented herein demonstrates the plausible hypothesis.
基金NKBRSF19990754 and National Natural Sciences Foundation under grant 19833010.
文摘We examine 14 plates of the globular cluster M3 (NGC 5272) taken with the 40 cm refractor at the Sheshan station of Shanghai Astronomical Observatory. The plates span over a period of about 77 years. The positions and absolute proper motions of eight stars in the Hipparcos Catalogue and of 49 stars in the Tycho-2 Catalogue are used as the reference frame. The astrometric reduction is made with the central overlapping principle. The absolute proper motions of 534 stars in a region of about 100' × 100' around the cluster are measured. With the new proper motion data the membership probabilities of the stars are determined. The average absolute proper motion obtained for the cluster is -0.06±0.30 mas yr-1 in R.A. and -2.6±0.30 mas yr-1 in Decl. By combining this result with the known distance and radial velocity of the cluster, we also obtained the Galactic orbit of M3 for a chosen three-component Galactic potential.
文摘We have obtained the absolute proper motion of globular cluster M3 from measurements of 14 plates taken with the 40cm refractor at Sheshan station of Shanghai observatory, spanning epoch is about 80 years. The positions and absolute proper motions of 24 stars in ACT catalogue are used as the reference frame. The reduction was made with the central overlapping principle. The absolute proper motions of 534 stars in the region of about 1° 5×1° 5 around the cluster M3 are determined. With the new data of proper motions, the membership probabilities of the stars are determined. The mean absolute proper motions for the cluster of -0 3±0 3 mas/yr in R.A. and -3 1±0 3 mas/yr in Dec. were obtained.Combining our results with the known distance and radial velocity of the cluster, we obtained its space motions and Galactic orbits in two different three component Galactic potentials.
文摘Fluid particles in translating surface gravity waves have an orbital motion which decreases in size with increasing mean depth. These wave characteristics came from observations and were not forecast theoretically. The classical potential flow model is incapable of explaining the particle movement due to the irrotational assumption and to a flaw in carrying out the method. When a wave passes by an observer from left to right, the particles move clockwise under a crest and a trough. This correct conclusion is consistent with what the incorrect standard theory implies but should not be considered to have been derived from it.
文摘Spacecraft formation flying is an attractive new concept in international aeronautic fields because of its powerful functions and low cost. In this paper, the formation design and PD closed-loop control of spacecraft formation flying in elliptical orbits are discussed. Based on two-body relative dynamics, the true anomaly is applied as independent variable instead of the variable of time. Since the apogee is considered as the starting point, the six integrating constants are calculated. Therefore, the algebraic solution is obtained for the relative motion in elliptical orbits. Moreover, the formation design is presented and both circular formation and line formation are provided in terms of an algebraic solution. This paper also discusses the PD-closed loop control for precise formation control in elliptical orbits. In this part, the error-type state equation is put forward and the linear quadratic regulator (LQR) method is used to calculate PD parameters. Though the gain matrix calculated from LQR is time-variable because the error-type state equation is time variable, the PD parameters are also considered as constants because of their small changes in simulation. Finally, taking circular formation as an example, the initial orbital elements are achieved for three secondary spacecraft. And the numerical simulation is analyzed under PD formation control with initial errors and J2 perturbation. The simulation results demonstrate the validity of PD closed-loop control scheme.
基金Project supported by the National Natural Science Foundation of China (Nos.10672084 and 10672084)
文摘The paper investigates the relative motion around the planetary displaced orbit. Several kinds of displaced orbits for geocentric and martian cases were discussed. First, the relative motion was linearized around the displaced orbits. Then, two seminatural control laws were investigated for each kind of orbit and the stable regions were obtained for each case. One of the two control laws is the passive control law that is very attractive for engineering practice. However, the two control laws are not very suitable for the Martian mission. Another special semi-natural control law is designed based on the requirement of the Martian mission. The results show that large stable regions exist for the control law.
文摘Dynamical behavior of nonlinear oscillator under combined parametric and forcing excitation, which includes yon der Pol damping, is very complex. In this paper, Melnikov's method is used to study the heteroclinic orbit bifurcations, subharmonic bifurcations and chaos in this system. Smale horseshoes and chaotic motions can occur from odd subharmonic bifurcation of infinite order in this system-far various resonant cases finally the numerical computing method is used to study chaotic motions of this system. The results achieved reveal some new phenomena.
文摘The relative motion between multiple satellites is a developed technique with many applications. Formation-flying missions use the relative motion dynamics in their design. In this work, the motion in invariant relative orbits is considered under the effects of second-order zonal harmonics in an equatorial orbit. The Hamiltonian framework is used to formulate the problem. All the possible conditions of the invariant relative motion are obtained with different inclinations of the follower satellite orbits. These second-order conditions warrantee the drift rates keeping two, or more, neighboring orbits from drifting apart. The conditions have been modeled. All the possibilities of choosing mean elements of the leader satellite orbit and differences in momenta between leader and follower satellites’ orbits are presented.
文摘In this paper we calculate the volume, mass, gravitational attraction to the Earth, angular momentum the orbit of the Trojan asteroid (TK7) [1]. In this paper, we use classical Newtonian mechanics to analyse some of the physical and orbital properties of the Trojan asteroid, which are still experimentally unknown. The asteroid should remain in Earth’s orbit for the next 100 years. We conclude by providing informed estimates of 2010 TK7’s yet unknown physical properties: i.e. mass, volume, gravitational attraction to Earth and angular momentum.