The ground motion attenuation models for PGA,PGV and response spectrum at rock sites and soils sites are derived separately from the digital strong motion records of moderate earthquakes in the Sichuan-Yunnan region a...The ground motion attenuation models for PGA,PGV and response spectrum at rock sites and soils sites are derived separately from the digital strong motion records of moderate earthquakes in the Sichuan-Yunnan region after 2007. By comparison with Yu Yanxiangs attenuation model for rock sites in western China,reliability of the model is verified for moderate earthquake. According to the distribution of strong motion data against magnitude and epicentral distance,the applicability and reliability of the results in this paper are discussed.展开更多
The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the E...The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the Eurasia reference framework has been obtained, and the general trend of contemporary crustal motion after the occurrence of the Wenchuan earthquake has been studied.In addition, using the velocity field, the block movement velocity has been estimated by least-squares fitting.Furthermore, the properties and displacement rates of main faults have been obtained from the differences in velocity vectors of the blocks on both sides of the faults.The results reveal that there are no obvious changes in the general characteristics of crustal motion in this area after the Wenchuan earthquake.The earthquake mainly changed the rate of the movement of the Chuan-Qing block and caused variation in the movement direction of the South China block.The effect of the earthquake on faults is mainly reflected in variations in fault displacement velocity; there is no fundamental change in the properties of fault activity.The displacement rates of the Xianshuihe fault decreased by 3–4 mm/a, the Longmenshan fault increased by 9–10 mm/a, and the northern segment of the Anninghe fault increased by approximately 9 mm/a.Furthermore, the displacement rates of the Minjiang, Xueshan, Huya, Longquanshan, and Xinjin faults increased by 2–3 mm/a.This implies that the effects of the Wenchuan earthquake on crustal movement can mainly be observed in the Chuan-Qing, South China, and N-Chuan-Dian blocks and their internal faults, as well as the Xianshuihe and Longmenshan faults and the northern section of the Anninghe fault.The reason for this is that the Wenchuan earthquake disturbed the kinematic and dynamic balance in the region.展开更多
Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dro...Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dropΔσof 75.95 bars,quality factor parameters Q0of 186.33 andηof 0.26,geometric attenuation parameters R1of 72.18km and R2of 139.70km.We calculate the Fourier spectrum and combine it with the random phase spectrum to get the ground motion time history,and build the strong motion acceleration attenuation relationship.The strong ground motion acceleration attenuation of the Pishan area is thus obtained.Because of the insufficiency of strong ground motion records,we added the records from the Wuqia MS6.9 earthquake on October 5,2008,the Akto MS6.2 earthquake on October 6,2008,and the Lop MS6.0 earthquake on March 9,2012 to the data.The comparison of the calculation results and the empirical attenuation relationships with strong ground motion records reveal that the strong motion data of Pishan and Lop earthquakes is higher than the empirical attenuation relationships.The Wuqia MS6.9 earthquake strong motion data is consistent with Yu Yanxiangs(2013)short axis result,and lower than the present result.展开更多
Based on the Chinese mainland GPS network (1994~1996), Fujian GPS network (1995~1997), cross fault deformation network (1982-1998), precise leveling network (1973~1980) and focal mechanism solutions of the recent sev...Based on the Chinese mainland GPS network (1994~1996), Fujian GPS network (1995~1997), cross fault deformation network (1982-1998), precise leveling network (1973~1980) and focal mechanism solutions of the recent several tens years, we synthetically and quantitatively studied the present-time crustal motion of the southeast coast of Chinese mainland-Fujian and its marginal sea. We find that this area with its mainland together moves toward SE with a rather constant velocity of 11 .2±3.0 mm/a. At the same time, there is a motion from the Quanzhou bay pointing to hinterland, with a major orientation of NW, extending toward two sides, and with an average velocity of 3.0±2.6 mm/a. The faults orienting NE show compressing motions, and the ones orienting NW show extending motions. The present-time strain field derived from crustal deformation is consistent with seismic stress field derived from the focal mechanism solutions and the tectonic stress field derived from geology data. The principal stress of compression orients NW (NWW) - SE (SEE). Demarcated by the NW orienting faults of the Quanzhou bay and Jinjiang-Yongan, the crustal motions show regional characteristics f the southwest of Fujian and the boundary of Fujian and Guangdong are areas of rising, the northeast of Fujian are areas of sinking. The horizontal strain rate and the fault motion of the former are both greater than the later. The side-transferring motion of Hymalaya collision zone and the compression of the west pacific subduction zone affect the motion of the research area. The amount of motion affected by the former is larger than the later, but the former is homogeneous and the later is not, which indicates that the events of strong earthquakes in this region relate more directly with western pacific subduction zone.展开更多
Questions concerning the functional role of the hollow region of the butterfly Pyrameis atalanta (L.) scale are experimentally investigated. Attention was initially directed to this problem by observation of the com...Questions concerning the functional role of the hollow region of the butterfly Pyrameis atalanta (L.) scale are experimentally investigated. Attention was initially directed to this problem by observation of the complex microstrucmre of the butterfly scale as well as other studies indicating higher lift on butterfly wings covered with scale. The aerodynamic forces were measured for two oscillating scale models. Results indicated that the air cavity of an oscillating model of the Pyrameis atalanta (L.) scale increased the lift by a factor of 1.15 and reduced the damping coefficients by a factor of 1.38. The modification of the aerodynamic effects on the model of butterfly scale was due to an increase of the virtual air mass, which influenced the body. The hollow region of the scale increased the virtual air mass by a factor of 1.2. The virtual mass of the butterfly scale with the hollow region was represented as the sum of air mass of two imaginary geometrical figures: a circular cylinder around the scale and a right-angled parallelepiped within the hollow region. The interaction mechanism of the butterfly Pyrameis atalanta (L.) scale with a flow was described. This novel interaction mechanism explained most geometrical features of the airpermeable butterfly scale (inverted V-profile of the ridges, nozzle of the tip edge, hollow region, and openings of the upper lamina) and their arrangement.展开更多
On the basis of distribution of active fault and regional rheological structure, a three-dimensional finite element model of Sichuan-Yunnan region, China, is constructed to simulate contemporary crustal motion and str...On the basis of distribution of active fault and regional rheological structure, a three-dimensional finite element model of Sichuan-Yunnan region, China, is constructed to simulate contemporary crustal motion and stress distribution and discuss the dynamic mechanism of crustal motion and deformation in the Sichuan-Yunnan region. Linear Maxwell visco-elastic model is applied, which includes the active fault zones, the elastic upper crust and viscous lower crust and upper mantle. Four different models with different boundary conditions and deep structure are calculated. Some conclusions are drawn through comparison. Firstly, the crustal rotation about the eastern syntaxis of the Himalaya in the Sicuan-Yunnan region may be controlled by the special dynamic boundary condition. The drag force of the lower-crust on the upper crust is not negligible. At the same time, the main active fault zones play an important role in the contemporary crustal motion and deformation in Sichuan-Yunnan region.展开更多
The amount of computation for detecting moving objects by the optical flow algorithm is large. The optical flow information in the smooth region cannot be detected by the optical flow algorithm, and it is susceptible ...The amount of computation for detecting moving objects by the optical flow algorithm is large. The optical flow information in the smooth region cannot be detected by the optical flow algorithm, and it is susceptible to noise in a complicated environment. In this study, an optimized Horn-Schunck (HS) optical flow algorithm based on motion estimation is proposed. To detect Harris corner in the image, the proposed algorithm is used in combination with the motion estimation algorithm based on macroblock to determine the region of interest (ROI) [1]. The ROI is then used as the initial motion vector for HS calculation to obtain the optical flow information. Filtering is conducted to eliminate the background noise. Experimental result shows that the application of the proposed algorithm improves the computational speed, avoids the interference of background noise, and enhances the robustness of HS. Moreover, the algorithm solves the problem rooted in the inability of the HS algorithm to detect the smooth part of optical flow information [2].展开更多
基金sponsored jointly by the special fund for basic research and operating expenses of Institute of Crustal Dynamics,CEA(ZDJ2013-04)"National Nature Science Foundation of China(51278469)
文摘The ground motion attenuation models for PGA,PGV and response spectrum at rock sites and soils sites are derived separately from the digital strong motion records of moderate earthquakes in the Sichuan-Yunnan region after 2007. By comparison with Yu Yanxiangs attenuation model for rock sites in western China,reliability of the model is verified for moderate earthquake. According to the distribution of strong motion data against magnitude and epicentral distance,the applicability and reliability of the results in this paper are discussed.
基金supported by a geological survey project of the China Geological Survey (No.1212011140013, No.12120113009800)
文摘The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the Eurasia reference framework has been obtained, and the general trend of contemporary crustal motion after the occurrence of the Wenchuan earthquake has been studied.In addition, using the velocity field, the block movement velocity has been estimated by least-squares fitting.Furthermore, the properties and displacement rates of main faults have been obtained from the differences in velocity vectors of the blocks on both sides of the faults.The results reveal that there are no obvious changes in the general characteristics of crustal motion in this area after the Wenchuan earthquake.The earthquake mainly changed the rate of the movement of the Chuan-Qing block and caused variation in the movement direction of the South China block.The effect of the earthquake on faults is mainly reflected in variations in fault displacement velocity; there is no fundamental change in the properties of fault activity.The displacement rates of the Xianshuihe fault decreased by 3–4 mm/a, the Longmenshan fault increased by 9–10 mm/a, and the northern segment of the Anninghe fault increased by approximately 9 mm/a.Furthermore, the displacement rates of the Minjiang, Xueshan, Huya, Longquanshan, and Xinjin faults increased by 2–3 mm/a.This implies that the effects of the Wenchuan earthquake on crustal movement can mainly be observed in the Chuan-Qing, South China, and N-Chuan-Dian blocks and their internal faults, as well as the Xianshuihe and Longmenshan faults and the northern section of the Anninghe fault.The reason for this is that the Wenchuan earthquake disturbed the kinematic and dynamic balance in the region.
基金jointly sponsored by “The Ground Motion Attenuation Relationship Based on Seismology and Its Practicability” of the National Natural Science Foundation of China(51178434)“With Digital Ride Network Small Earthquake Records to Establish Regional Strong Ground Motion Attenuation Relations”from the National Natural Science Foundation of China(51478443)“Based on the Regional Parameters of Mixed Ground Motion Attenuation Relationship”from the National Natural Science Foundation of China(51678540)
文摘Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dropΔσof 75.95 bars,quality factor parameters Q0of 186.33 andηof 0.26,geometric attenuation parameters R1of 72.18km and R2of 139.70km.We calculate the Fourier spectrum and combine it with the random phase spectrum to get the ground motion time history,and build the strong motion acceleration attenuation relationship.The strong ground motion acceleration attenuation of the Pishan area is thus obtained.Because of the insufficiency of strong ground motion records,we added the records from the Wuqia MS6.9 earthquake on October 5,2008,the Akto MS6.2 earthquake on October 6,2008,and the Lop MS6.0 earthquake on March 9,2012 to the data.The comparison of the calculation results and the empirical attenuation relationships with strong ground motion records reveal that the strong motion data of Pishan and Lop earthquakes is higher than the empirical attenuation relationships.The Wuqia MS6.9 earthquake strong motion data is consistent with Yu Yanxiangs(2013)short axis result,and lower than the present result.
文摘Based on the Chinese mainland GPS network (1994~1996), Fujian GPS network (1995~1997), cross fault deformation network (1982-1998), precise leveling network (1973~1980) and focal mechanism solutions of the recent several tens years, we synthetically and quantitatively studied the present-time crustal motion of the southeast coast of Chinese mainland-Fujian and its marginal sea. We find that this area with its mainland together moves toward SE with a rather constant velocity of 11 .2±3.0 mm/a. At the same time, there is a motion from the Quanzhou bay pointing to hinterland, with a major orientation of NW, extending toward two sides, and with an average velocity of 3.0±2.6 mm/a. The faults orienting NE show compressing motions, and the ones orienting NW show extending motions. The present-time strain field derived from crustal deformation is consistent with seismic stress field derived from the focal mechanism solutions and the tectonic stress field derived from geology data. The principal stress of compression orients NW (NWW) - SE (SEE). Demarcated by the NW orienting faults of the Quanzhou bay and Jinjiang-Yongan, the crustal motions show regional characteristics f the southwest of Fujian and the boundary of Fujian and Guangdong are areas of rising, the northeast of Fujian are areas of sinking. The horizontal strain rate and the fault motion of the former are both greater than the later. The side-transferring motion of Hymalaya collision zone and the compression of the west pacific subduction zone affect the motion of the research area. The amount of motion affected by the former is larger than the later, but the former is homogeneous and the later is not, which indicates that the events of strong earthquakes in this region relate more directly with western pacific subduction zone.
文摘Questions concerning the functional role of the hollow region of the butterfly Pyrameis atalanta (L.) scale are experimentally investigated. Attention was initially directed to this problem by observation of the complex microstrucmre of the butterfly scale as well as other studies indicating higher lift on butterfly wings covered with scale. The aerodynamic forces were measured for two oscillating scale models. Results indicated that the air cavity of an oscillating model of the Pyrameis atalanta (L.) scale increased the lift by a factor of 1.15 and reduced the damping coefficients by a factor of 1.38. The modification of the aerodynamic effects on the model of butterfly scale was due to an increase of the virtual air mass, which influenced the body. The hollow region of the scale increased the virtual air mass by a factor of 1.2. The virtual mass of the butterfly scale with the hollow region was represented as the sum of air mass of two imaginary geometrical figures: a circular cylinder around the scale and a right-angled parallelepiped within the hollow region. The interaction mechanism of the butterfly Pyrameis atalanta (L.) scale with a flow was described. This novel interaction mechanism explained most geometrical features of the airpermeable butterfly scale (inverted V-profile of the ridges, nozzle of the tip edge, hollow region, and openings of the upper lamina) and their arrangement.
基金Ministry of Science and Technology (2004CB418406, 2005DKA64000)the Basic Science Research Plan of the Institute of Earthquake Science, China Earthquake Administration (02076902-03).
文摘On the basis of distribution of active fault and regional rheological structure, a three-dimensional finite element model of Sichuan-Yunnan region, China, is constructed to simulate contemporary crustal motion and stress distribution and discuss the dynamic mechanism of crustal motion and deformation in the Sichuan-Yunnan region. Linear Maxwell visco-elastic model is applied, which includes the active fault zones, the elastic upper crust and viscous lower crust and upper mantle. Four different models with different boundary conditions and deep structure are calculated. Some conclusions are drawn through comparison. Firstly, the crustal rotation about the eastern syntaxis of the Himalaya in the Sicuan-Yunnan region may be controlled by the special dynamic boundary condition. The drag force of the lower-crust on the upper crust is not negligible. At the same time, the main active fault zones play an important role in the contemporary crustal motion and deformation in Sichuan-Yunnan region.
文摘The amount of computation for detecting moving objects by the optical flow algorithm is large. The optical flow information in the smooth region cannot be detected by the optical flow algorithm, and it is susceptible to noise in a complicated environment. In this study, an optimized Horn-Schunck (HS) optical flow algorithm based on motion estimation is proposed. To detect Harris corner in the image, the proposed algorithm is used in combination with the motion estimation algorithm based on macroblock to determine the region of interest (ROI) [1]. The ROI is then used as the initial motion vector for HS calculation to obtain the optical flow information. Filtering is conducted to eliminate the background noise. Experimental result shows that the application of the proposed algorithm improves the computational speed, avoids the interference of background noise, and enhances the robustness of HS. Moreover, the algorithm solves the problem rooted in the inability of the HS algorithm to detect the smooth part of optical flow information [2].