In this paper, the barge effect on the motion responses of the ttmnel element immerging by the moored barge under waves is investigated experimentally. Both the motion responses of the tunnel element and the moored ba...In this paper, the barge effect on the motion responses of the ttmnel element immerging by the moored barge under waves is investigated experimentally. Both the motion responses of the tunnel element and the moored barge in the experiment are simultaneously acquired by the Untouched 6-D Measurement System. The results show that the sway motion responses of the tunnel element immerging by the moored barge are different from those without the barge. For the system of the tunnel element and the moored barge, the moored barge has two motion components in the sway direction. The high frequency motion of the moored barge has little effect on the high frequency motion of the tunnel element with moored barge. However, the low frequency motion of the moored barge has a significant effect on the sway motion of the tunnel element. The motion responses of the tunnel element and the barge in the heave and roll directions are mainly the high frequency motion.展开更多
In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion ...In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion responses. The procedure can replace a decade of simulations in regular wave with one single run to obtain a complete curve of linear motion response, considerably reducing computation time. A correction procedure is employed to adjust the wave generation signal based on the wave spectrum and achieves fairly better results in the wave tank. Three ship models with five wave conditions are introduced to validate the method. The computations in this paper are completed by using the solver naoe-FOAM-SJTU, a solver developed for ship and ocean engineering based on the open source code OpenFOAM. The computational motion responses by the irregular wave procedure are compared with the results by regular wave, experiments and strip theory. Transfer functions by irregular wave closely agree with the data obtained in the regular waves, showing negligible difference. The comparison between computational results and experiments also show good agreements. The results better predicted by CFD method than strip theories indicate that this method can compensate for the inaccuracy of the strip theories. The results confirm that the irregular wave procedure is a promising method for the accurate prediction of motion responses with less accuracy loss and higher efficiency compared with the regular wave procedure.展开更多
The present research aims at clarifying the effects of freak wave on the motion and dynamic responses of a semisubmersible. To reveal the effects of mooring stiffness, two mooring systems were employed in the model te...The present research aims at clarifying the effects of freak wave on the motion and dynamic responses of a semisubmersible. To reveal the effects of mooring stiffness, two mooring systems were employed in the model tests and time-domain simulations. The 6-DOF motion responses and mooring tensions have been measured and the 3- DOF motions of fairleads were calculated as well. From the time series, trajectories and statistics information, the interactions between the freak wave and the semisubmersible have been demonstrated and the effects of mooring stiffness have been identified. The shortage of numerical simulations based on 3D potential flow theory is presented. Results show that the freak wave is likely to cause large horizontal motions for soft mooring system and to result in extremely large mooring tensions for tight mooring system. Therefore, the freak wave is a real threat for the marine structure, which needs to be carefully considered at design stage.展开更多
The immersion of large-scale tunnel elements is one of the most important working procedures in the construction of an underwater immersed tunnel. To investigate the dynamic characteristics of tunnel element in the pr...The immersion of large-scale tunnel elements is one of the most important working procedures in the construction of an underwater immersed tunnel. To investigate the dynamic characteristics of tunnel element in the process of immersion, based on the twin-barge immersing operation method, the frequency-domain analysis of the tunnel element motions under wave actions was made. The linear wave diffraction theory and the three-dimensional source distribution method were applied to calculate the wave loads and motion responses of the tunnel element under different incident wave conditions. In the study, movement of the two barges in the water was assumed to be small and was ignored. Cable tension was computed by the static method. On the basis of the above theories, a computer program was made, and two cases were taken to check the validity of the program. The results showed that wave loads acting on the immersed tunnel element are relatively large near the water surface, and they decrease with the increase of immersing depth of the tunnel element. Wave loads first increase, then decrease, with the increase of wave period. The motion responses of the tunnel element are also generally large near the water surface and decrease as the immersing depth increases.展开更多
In this paper, the motions are studied of a multi-body which is composed of two plates hinged together and moored by eight mooring lines in regular waves. The experimental results are compared with computational resul...In this paper, the motions are studied of a multi-body which is composed of two plates hinged together and moored by eight mooring lines in regular waves. The experimental results are compared with computational results. The linear potential theory and the perturbation method are combined to study this complicated system. The former is used to calculate the wave forces acting on the plates and the motion responses of them, while the latter is used to describe the dynamic character of the eight mooring lines coupled with the two hinged plates. Some response results of each plate are presented and comparisons between calculated results and experimental data are given. All the calculations are confined to regular beam waves.展开更多
This paper analyzes the motion performance and mooring system of deepwater semi-submersible drilling unit in the district of the South China Sea using the MOSES procedure system. After the 3-D panel model of the unit ...This paper analyzes the motion performance and mooring system of deepwater semi-submersible drilling unit in the district of the South China Sea using the MOSES procedure system. After the 3-D panel model of the unit was built, the 3-D diffraction-radiation theory was used to obtain the hydrodynamic loads on the wet surfaces and the response amplitude operators (RAO) of the unit. According to the environmental data, the short-term motion response to motion performance of the unit is predicted by the spectral method. Then a time-domain calculation was done to analyze the motion of the unit with its mooring system. The research results can be a reference for the model test of unit.展开更多
The launching and recovery process of a human-occupied vehicle(HOV)faces more complex wave effects than other types of submersible operations.However,due to the nonlinearity between the HOV and its mother ship,difficu...The launching and recovery process of a human-occupied vehicle(HOV)faces more complex wave effects than other types of submersible operations.However,due to the nonlinearity between the HOV and its mother ship,difficulties occur in theoretically simulating their coupled motion and hydrodynamics.The coupled motion responses and the load under different regular wave conditions are investigated experimentally in this study.The optimized design of the experimental scheme simulated the launching and recovery process of the mother ship and HOV in regular waves.The attitude sensor performed synchronous real-time measurement of the coupled motion between the mother ship and HOV as well as obtained the load data on the coupled motion under different cable lengths.The results show that models in heading waves mainly lead to the vertical motion of the hoisting point.In beam waves,the transverse and vertical motions of the hoisting point occur in a certain frequency of waves.Under the heading and beam wave conditions,the longer the hoisting cable is,the greater the movement amplitude of the submersible is.Moreover,compared with the condition of the beam waves,the hoisting submersible has less influence on the mother ship under the condition of the heading waves.The findings provide theoretical support for the design optimization of the launching and recovery operation.展开更多
To improve the energy efficiency of ships and to predict ship motion response under actual sea conditions,the far-field theory,strip theory,and Fujii and Takahashi’s modified semi-empirical method are based and studi...To improve the energy efficiency of ships and to predict ship motion response under actual sea conditions,the far-field theory,strip theory,and Fujii and Takahashi’s modified semi-empirical method are based and studied to calculate the wave-induced added resistance.Firstly,a new modified formula based on the Maruo method is presented to calculate the radiation added resistance for the ship with a complex surface.Meanwhile,some calculation details such as the Green function,the shape of the sections(shape below the still water level or shape below the wave level)in the strip theory,and so on are discussed.Finally,the CFD method is used to simulate the motions of the hull and the added resistance,and the results of the CFD method and those of other numerical methods are analyzed and compared with the experiment results.The modified method in the paper can predict the added resistance in waves for the complex-hull-surface ships well and quickly.展开更多
In order to predict the hydrodynamic performance of semi-submersible offshore platform accurately,based on CFD theory,continuous equation and N-S equation as the control equation,RNG type k-εmodel as turbulence model...In order to predict the hydrodynamic performance of semi-submersible offshore platform accurately,based on CFD theory,continuous equation and N-S equation as the control equation,RNG type k-εmodel as turbulence model,using the finite difference method to discretize the control equation,using the Semi-Implicit Method for Pressure Linked Equation(SIMPLE)algorithm to solve the control equation,using the VOF method to capture the free surface.The numerical wave tank of irregular wave is established,and the wave force and motion response of the semi-submersible platform under irregular wave are studied.Based on the Jonswap spectrum density function,for a certain area of two irregular waves(South China sea,a-ten-year return period,a-hundred-year return period)sea condition,five wave direction Angle(0°,30°,45°,60°,90°),a total of 10 kinds of conditions of the motion response of semi-submersible platform are simulated,through analysis and comparison of simulation results,the influence law of wave angle,wave period and wave height on platform motion is obtained.Compared with the experimental values,the results of heave and pitch are close to the experimental data under the sea condition of 2,0 degree wave angles.The research results in this paper can provide reference for the design and motion response prediction of practical semi-submersible offshore platforms.展开更多
In order to accurately predict the on-wave resistance and responses to hull motions of ships in actual sea conditions,the k-εmethod of the RNG model is adopted on the basis of the unsteady RANS method.The two-formula...In order to accurately predict the on-wave resistance and responses to hull motions of ships in actual sea conditions,the k-εmethod of the RNG model is adopted on the basis of the unsteady RANS method.The two-formula turbulence model deals with the viscous flow,the VOF method captures the free surface,the velocity boundary method makes waves,the artificial damping method is used to eliminate waves,and the nested grid technology is used to deal with the motion response of ships on waves.Combined with the 6-DOF motion formula,a three-dimensional numerical wave cell for regular waves is established.For one example,taking a KCS Container ship and fishing boat sailing at a mid-high-speed,the increase of wave resistance and motion response at different wavelengths are analyzed,and the simulation results are compared with the experimental value,the content of strip theory in potential flow theory and the panel method to prove the reliability of CFD method in predicting ship motion.展开更多
A novel semi-submersible platform is proposed for 5 MW wind turbines.This concept focuses on an integrated system formed by combining porous shells with a semi-submersible platform.A coupled aerodynamic–hydrodynamic...A novel semi-submersible platform is proposed for 5 MW wind turbines.This concept focuses on an integrated system formed by combining porous shells with a semi-submersible platform.A coupled aerodynamic–hydrodynamic–mooring analysis of the new system is performed.The motion responses of the novel platform system and the traditional platform are compared.The differences in hydrodynamic performance between the two platforms are also evaluated.The influence of the geometric parameters(porosity,diameter,and wall thickness)of porous shells on the motion response behavior of the new system is studied.Overall,the new semi-submersible platform exhibits superior stability in terms of pitch and heave degrees of freedom,demonstrating minimal effects on the motion response in the surge degree of freedom.展开更多
A numerical model of flatfish cage is built based on the lumped mass method and the principle of rigid body kinematics. To validate the numerical model, a series of physical model tests are conducted in the wave flume...A numerical model of flatfish cage is built based on the lumped mass method and the principle of rigid body kinematics. To validate the numerical model, a series of physical model tests are conducted in the wave flume. The numerical results correspond well with the data sets from physical model test. The effect of weight of bottom frame, height of fish net and net shape on motion responses of fish cage and tension force on mooring lines is then analyzed. The results indicate that the vertical displacements of float collar and bottom frame decrease with the increase in the weight of bottom frame; the maximum tension force on mooring lines increases with the increasing weight of bottom frame. The inclination angles of float collar and bottom frame decrease with the increasing net height; the maximum tension force increases obviously with the increase of net height.展开更多
Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power p...Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power production capacity, power output quality, and cost effectiveness, comprehensive marine energy utilization has become an inevitable trend in marine energy development. Based on a semi-submersible wind-tidal combined power generation device,a three-dimensional frequency domain potential flow theory is used to study the hydrodynamic performance of such a device. For this study, the RAOs and hydrodynamic coefficients of the floating carrier platform to the regular wave were obtained. The influence of the tidal turbine on the platform in terms of frequency domain was considered as added mass and damping. The direct load of the tidal turbine was obtained by CFX.FORTRAN software was used for the second development of adaptive query workload aware software, which can include the external force. The motion response of the platform to the irregular wave and the tension of the mooring line were calculated under the limiting condition(one mooring line breakage). The results showed that the motion response of the carrier to the surge and sway direction is more intense, but the swing amplitude is within the acceptable range. Even in the worst case scenario, the balance position of the platform was still in the positioning range, which met the requirements of the working sea area. The safety factor of the mooring line tension also complied with the requirements of the design specification. Therefore, it was found that the hydrodynamic performance and motion responses of a semi-submersible wind-tidal combined power generation device can meet the power generation requirements under all design conditions, and the device presents a reliable power generation system.展开更多
The hydrodynamic behaviors of a floating breakwater consisting of a rectangular pontoon and horizontal plates are studied theoretically. The fluid motion is idealized as two-dimensional linear potential flow. The moti...The hydrodynamic behaviors of a floating breakwater consisting of a rectangular pontoon and horizontal plates are studied theoretically. The fluid motion is idealized as two-dimensional linear potential flow. The motions of the floating breakwater are assumed to be two-dimensional in sway, heave, and roll. The solution to the fluid motion is derived by transforming the governing differential equation into the integral equation on the boundary in time domain with the Green's function method. The motion equations of the floating breakwater are established and solved with the fourth-order Runge-Kutta method to obtain the displacement and velocity of the breakwater. The mooring forces are computed with the static method. The computational results of the wave transmission coefficient, the motion responses, and the mooring forces of the pontoon-plate floating breakwater are given. It is indicated that the relative width of the pontoon is an important factor influencing the wave transmission coefficient of the floating breakwater. The transmission coefficient decreases obviously as the relative width of the pontoon increases. The horizontal plates help to reduce the wave transmission over the floating breakwater. The motion responses and the mooring forces of the pontoon-plate floating breakwater are less than those of the pontoon floating breakwater. The mooring force at the offshore side is larger than that at the onshore side.展开更多
An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For thi...An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For this new system, most of collision energy is absorbed through the displacement of floating platforms. In order to illustrate the validity of the system, a series of model tests were conducted at a scale of 1:40. The coupled motion characteristics of the floating mooring platforms were discussed under regular and irregular waves, and the influences of wave direction and other characteristics on dynamic response of the system were analyzed. The results show that the mooring system is safest at 0° of wave incident angle, whereas the most dangerous mooring state occurs at 90° of wave incident angle. Motion responses increase with the increase of wave height, but are not linearly related to changes in wave height.展开更多
In this paper, a panel method based on three dimensional potential flow theory is used to study the problem of wave added resistance. The time-domain motion response of Wigely III ship in head waves is calculated by A...In this paper, a panel method based on three dimensional potential flow theory is used to study the problem of wave added resistance. The time-domain motion response of Wigely III ship in head waves is calculated by AQWA, and then the wave added resistance of ship is obtained by near-field pressure integration method. By comparing the calculated results with the experimental data in literature, it is shown that the variation trend and peak value are in good agreement, and the accuracy and efficiency meet the research requirements. Based on the above mentioned method, the wave added resistance of a deep-V hybrid monohull in head waves is studied. The motions and wave added resistances of the deep-V hybrid monohull and the deep-V original ship advancing in head waves with various forward speed and wave frequencies are calculated and analyzed. The results show that the longitudinal motion response of the deep-V hybrid monohull is effectively suppressed and the wave added resistance is obviously reduced, the new type of ship has good engineering application prospects. The present method provides an approach of satisfactory accuracy and efficiency to predict wave added resistance of ships voyaging in waves.展开更多
The three-bucket jacket foundation is a new type of foundation for offshore wind turbine that has the advantages of fast construction speed and suitability for deep water. The study of the hoisting and launching proce...The three-bucket jacket foundation is a new type of foundation for offshore wind turbine that has the advantages of fast construction speed and suitability for deep water. The study of the hoisting and launching process is of great significance to ensure construction safety in actual projects. In this paper, a new launching technology is proposed that is based on the foundation of the three-bucket jacket for offshore wind turbine. A complete time domain simulation of the launching process of three-bucket jacket foundation is carried out by a theoretical analysis combined with hydrodynamic software Moses. At the same time, the effects of different initial air storage and sea conditions on the motion response of the structure and the hoisting cable tension are studied. The results show that the motion response of the structure is the highest when it is lowered to 1.5 times the bucket height. The natural period of each degree of freedom of the structure increases with the increase of the lowering depth. The structural motion response and the hoisting cable tension vary greatly in the early phases of Stages Ⅰ and Ⅲ, smaller in Stage Ⅱ, and gradually stabilize in the middle and late phases of Stage Ⅲ.展开更多
In this paper, the underwater vehicle, sling and the mother ship are considered as a single degree of freedom system connected by a spring. Through the analysis of this system, a physical model is established, which d...In this paper, the underwater vehicle, sling and the mother ship are considered as a single degree of freedom system connected by a spring. Through the analysis of this system, a physical model is established, which describes the motion of the vehicle caused by the ship motion and wave motion. Furthermore, a mathematical model based on this physical model is obtained, and a numerical solution program is made. As an example, a practical launch and recovery system fbr an underwater robot is calculated by use of the program, and the motion track of the robot is obtained.展开更多
Mobile observation platforms are widely used in oceanographic and marine resource exploration and other applications. Wave Glider is a mobile platform that can transform wave energy into locomotion power and overcome ...Mobile observation platforms are widely used in oceanographic and marine resource exploration and other applications. Wave Glider is a mobile platform that can transform wave energy into locomotion power and overcome the bottleneck of low energy supply. Wave Glider has recently been applied to tow underwater sensors fulfilling observation tasks. In this paper, the dynamic system of Wave Glider with a towed body is studied by applying multibody mechanics, and the relevant motion conditions of the system are investigated. Dynamic models of Wave Glider with a towed body and tether are first developed individually and then integrated into a whole model. The numerical method is used to obtain the dynamic responses and assess performance of the towed body pulled by the submerged glider of Wave Glider. The effects of sea state, mass of the towed body, and length of the towed cable are investigated on the basis of simulation results. This work can be used for the design and analysis of Wave Glider-towed body systems.展开更多
With the continuous utilization of offshore wind resources,the installation depth and capacity of offshore wind turbines are increasing.In order to meet construction requirements of renewable energy,offshore wind farm...With the continuous utilization of offshore wind resources,the installation depth and capacity of offshore wind turbines are increasing.In order to meet construction requirements of renewable energy,offshore wind farms are bound to develop further and deeper into the sea.As a result,a novel kind of power generation equipment,Floating Offshore Wind Turbines(FOWT),emerges as the times require.Consequently,this paper provides an objective comment on some key scientific difficulties.Firstly,The statistics and forecast of the market demand and installed capacity of offshore wind energy show a steady growth.After that,the advantages of constructing FOWT and most floating projects in various countries are summarized.And then,the reconstruction design of blades is reviewed under“Reynolds number”and“Froude number”similarity criterion,which is a prerequisite for achieving specific aerodynamic performance.So far,this paper focuses on aerodynamic researches,including aerodynamic forces and flow fields.On this basis,pitch angle control strategies are proposed to reduce aerodynamic forces on the premise of ensuring power generations.Finally,some other joint science problems to be solved are listed.Whether theoretical analysis,numerical simulations,ocean engineering basin tests,wind tunnel experiments or prototype sea measurements,FOWT is expected to break through various obstacles and finally achieve efficient and stable commercial operations.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11272079)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51221961)
文摘In this paper, the barge effect on the motion responses of the ttmnel element immerging by the moored barge under waves is investigated experimentally. Both the motion responses of the tunnel element and the moored barge in the experiment are simultaneously acquired by the Untouched 6-D Measurement System. The results show that the sway motion responses of the tunnel element immerging by the moored barge are different from those without the barge. For the system of the tunnel element and the moored barge, the moored barge has two motion components in the sway direction. The high frequency motion of the moored barge has little effect on the high frequency motion of the tunnel element with moored barge. However, the low frequency motion of the moored barge has a significant effect on the sway motion of the tunnel element. The motion responses of the tunnel element and the barge in the heave and roll directions are mainly the high frequency motion.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379125,11272120)the National Key Basic Research Development Program of China(973Program,Grant No.2013CB036103)the High Technology of Marine Research Project of the Ministry of Industry and Information Technology of China
文摘In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion responses. The procedure can replace a decade of simulations in regular wave with one single run to obtain a complete curve of linear motion response, considerably reducing computation time. A correction procedure is employed to adjust the wave generation signal based on the wave spectrum and achieves fairly better results in the wave tank. Three ship models with five wave conditions are introduced to validate the method. The computations in this paper are completed by using the solver naoe-FOAM-SJTU, a solver developed for ship and ocean engineering based on the open source code OpenFOAM. The computational motion responses by the irregular wave procedure are compared with the results by regular wave, experiments and strip theory. Transfer functions by irregular wave closely agree with the data obtained in the regular waves, showing negligible difference. The comparison between computational results and experiments also show good agreements. The results better predicted by CFD method than strip theories indicate that this method can compensate for the inaccuracy of the strip theories. The results confirm that the irregular wave procedure is a promising method for the accurate prediction of motion responses with less accuracy loss and higher efficiency compared with the regular wave procedure.
基金financially supported by the National Natural Science Foundation of China(Grant No.51779141)the Research Funding of State Key Laboratory of Ocean Engineering(Grant No.1614)
文摘The present research aims at clarifying the effects of freak wave on the motion and dynamic responses of a semisubmersible. To reveal the effects of mooring stiffness, two mooring systems were employed in the model tests and time-domain simulations. The 6-DOF motion responses and mooring tensions have been measured and the 3- DOF motions of fairleads were calculated as well. From the time series, trajectories and statistics information, the interactions between the freak wave and the semisubmersible have been demonstrated and the effects of mooring stiffness have been identified. The shortage of numerical simulations based on 3D potential flow theory is presented. Results show that the freak wave is likely to cause large horizontal motions for soft mooring system and to result in extremely large mooring tensions for tight mooring system. Therefore, the freak wave is a real threat for the marine structure, which needs to be carefully considered at design stage.
基金Supported by the Key Program of the National Natural Science Foundation of China under Grant No.50439010the Main Program of the Ministry of Education of China under Grant No.305003
文摘The immersion of large-scale tunnel elements is one of the most important working procedures in the construction of an underwater immersed tunnel. To investigate the dynamic characteristics of tunnel element in the process of immersion, based on the twin-barge immersing operation method, the frequency-domain analysis of the tunnel element motions under wave actions was made. The linear wave diffraction theory and the three-dimensional source distribution method were applied to calculate the wave loads and motion responses of the tunnel element under different incident wave conditions. In the study, movement of the two barges in the water was assumed to be small and was ignored. Cable tension was computed by the static method. On the basis of the above theories, a computer program was made, and two cases were taken to check the validity of the program. The results showed that wave loads acting on the immersed tunnel element are relatively large near the water surface, and they decrease with the increase of immersing depth of the tunnel element. Wave loads first increase, then decrease, with the increase of wave period. The motion responses of the tunnel element are also generally large near the water surface and decrease as the immersing depth increases.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.50009005 and No.50039010)
文摘In this paper, the motions are studied of a multi-body which is composed of two plates hinged together and moored by eight mooring lines in regular waves. The experimental results are compared with computational results. The linear potential theory and the perturbation method are combined to study this complicated system. The former is used to calculate the wave forces acting on the plates and the motion responses of them, while the latter is used to describe the dynamic character of the eight mooring lines coupled with the two hinged plates. Some response results of each plate are presented and comparisons between calculated results and experimental data are given. All the calculations are confined to regular beam waves.
基金Supported by the National High Technology Research and Development Program of China under Grant No.2006AA09A104
文摘This paper analyzes the motion performance and mooring system of deepwater semi-submersible drilling unit in the district of the South China Sea using the MOSES procedure system. After the 3-D panel model of the unit was built, the 3-D diffraction-radiation theory was used to obtain the hydrodynamic loads on the wet surfaces and the response amplitude operators (RAO) of the unit. According to the environmental data, the short-term motion response to motion performance of the unit is predicted by the spectral method. Then a time-domain calculation was done to analyze the motion of the unit with its mooring system. The research results can be a reference for the model test of unit.
基金National Natural Science Foundation of China(Grant No.51909039)Shandong Provincial Key Laboratory of Ocean Engineering(Grant No.201807).
文摘The launching and recovery process of a human-occupied vehicle(HOV)faces more complex wave effects than other types of submersible operations.However,due to the nonlinearity between the HOV and its mother ship,difficulties occur in theoretically simulating their coupled motion and hydrodynamics.The coupled motion responses and the load under different regular wave conditions are investigated experimentally in this study.The optimized design of the experimental scheme simulated the launching and recovery process of the mother ship and HOV in regular waves.The attitude sensor performed synchronous real-time measurement of the coupled motion between the mother ship and HOV as well as obtained the load data on the coupled motion under different cable lengths.The results show that models in heading waves mainly lead to the vertical motion of the hoisting point.In beam waves,the transverse and vertical motions of the hoisting point occur in a certain frequency of waves.Under the heading and beam wave conditions,the longer the hoisting cable is,the greater the movement amplitude of the submersible is.Moreover,compared with the condition of the beam waves,the hoisting submersible has less influence on the mother ship under the condition of the heading waves.The findings provide theoretical support for the design optimization of the launching and recovery operation.
基金The research was financially supported by the National Natural Science Foundation of China(Grant No.51009087)the Shanghai Natural Science Fund Project(Grant No.14ZR1419500).
文摘To improve the energy efficiency of ships and to predict ship motion response under actual sea conditions,the far-field theory,strip theory,and Fujii and Takahashi’s modified semi-empirical method are based and studied to calculate the wave-induced added resistance.Firstly,a new modified formula based on the Maruo method is presented to calculate the radiation added resistance for the ship with a complex surface.Meanwhile,some calculation details such as the Green function,the shape of the sections(shape below the still water level or shape below the wave level)in the strip theory,and so on are discussed.Finally,the CFD method is used to simulate the motions of the hull and the added resistance,and the results of the CFD method and those of other numerical methods are analyzed and compared with the experiment results.The modified method in the paper can predict the added resistance in waves for the complex-hull-surface ships well and quickly.
基金National Natural Science Foundation of China(No.51779135,51009087)Shanghai Natural Science Foundation of China(project approval number:14ZR1419500).
文摘In order to predict the hydrodynamic performance of semi-submersible offshore platform accurately,based on CFD theory,continuous equation and N-S equation as the control equation,RNG type k-εmodel as turbulence model,using the finite difference method to discretize the control equation,using the Semi-Implicit Method for Pressure Linked Equation(SIMPLE)algorithm to solve the control equation,using the VOF method to capture the free surface.The numerical wave tank of irregular wave is established,and the wave force and motion response of the semi-submersible platform under irregular wave are studied.Based on the Jonswap spectrum density function,for a certain area of two irregular waves(South China sea,a-ten-year return period,a-hundred-year return period)sea condition,five wave direction Angle(0°,30°,45°,60°,90°),a total of 10 kinds of conditions of the motion response of semi-submersible platform are simulated,through analysis and comparison of simulation results,the influence law of wave angle,wave period and wave height on platform motion is obtained.Compared with the experimental values,the results of heave and pitch are close to the experimental data under the sea condition of 2,0 degree wave angles.The research results in this paper can provide reference for the design and motion response prediction of practical semi-submersible offshore platforms.
文摘In order to accurately predict the on-wave resistance and responses to hull motions of ships in actual sea conditions,the k-εmethod of the RNG model is adopted on the basis of the unsteady RANS method.The two-formula turbulence model deals with the viscous flow,the VOF method captures the free surface,the velocity boundary method makes waves,the artificial damping method is used to eliminate waves,and the nested grid technology is used to deal with the motion response of ships on waves.Combined with the 6-DOF motion formula,a three-dimensional numerical wave cell for regular waves is established.For one example,taking a KCS Container ship and fishing boat sailing at a mid-high-speed,the increase of wave resistance and motion response at different wavelengths are analyzed,and the simulation results are compared with the experimental value,the content of strip theory in potential flow theory and the panel method to prove the reliability of CFD method in predicting ship motion.
基金Supported by the National Natural Science Foundation of China under Grant Nos.U22A20242 and 52301313.
文摘A novel semi-submersible platform is proposed for 5 MW wind turbines.This concept focuses on an integrated system formed by combining porous shells with a semi-submersible platform.A coupled aerodynamic–hydrodynamic–mooring analysis of the new system is performed.The motion responses of the novel platform system and the traditional platform are compared.The differences in hydrodynamic performance between the two platforms are also evaluated.The influence of the geometric parameters(porosity,diameter,and wall thickness)of porous shells on the motion response behavior of the new system is studied.Overall,the new semi-submersible platform exhibits superior stability in terms of pitch and heave degrees of freedom,demonstrating minimal effects on the motion response in the surge degree of freedom.
基金supported by the National Natural Science Foundation of China(Grant Nos.51109187,51239002 and 51221961the Project form Zhoushan Science and Technology Bureau(Grant No.2013C41002)
文摘A numerical model of flatfish cage is built based on the lumped mass method and the principle of rigid body kinematics. To validate the numerical model, a series of physical model tests are conducted in the wave flume. The numerical results correspond well with the data sets from physical model test. The effect of weight of bottom frame, height of fish net and net shape on motion responses of fish cage and tension force on mooring lines is then analyzed. The results indicate that the vertical displacements of float collar and bottom frame decrease with the increase in the weight of bottom frame; the maximum tension force on mooring lines increases with the increasing weight of bottom frame. The inclination angles of float collar and bottom frame decrease with the increasing net height; the maximum tension force increases obviously with the increase of net height.
基金financially supported by the National Natural Science Foundation of China(Nos.5177906251579055)+1 种基金the Fundamental Research Funds for the Central Universities of China(No.HEUCFP201714)Shenzhen Special Fund for the future industries(No.JCYJ20160331163751413)
文摘Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power production capacity, power output quality, and cost effectiveness, comprehensive marine energy utilization has become an inevitable trend in marine energy development. Based on a semi-submersible wind-tidal combined power generation device,a three-dimensional frequency domain potential flow theory is used to study the hydrodynamic performance of such a device. For this study, the RAOs and hydrodynamic coefficients of the floating carrier platform to the regular wave were obtained. The influence of the tidal turbine on the platform in terms of frequency domain was considered as added mass and damping. The direct load of the tidal turbine was obtained by CFX.FORTRAN software was used for the second development of adaptive query workload aware software, which can include the external force. The motion response of the platform to the irregular wave and the tension of the mooring line were calculated under the limiting condition(one mooring line breakage). The results showed that the motion response of the carrier to the surge and sway direction is more intense, but the swing amplitude is within the acceptable range. Even in the worst case scenario, the balance position of the platform was still in the positioning range, which met the requirements of the working sea area. The safety factor of the mooring line tension also complied with the requirements of the design specification. Therefore, it was found that the hydrodynamic performance and motion responses of a semi-submersible wind-tidal combined power generation device can meet the power generation requirements under all design conditions, and the device presents a reliable power generation system.
基金supported by the National Natural Science Foundation of China (Grant No. 51009032)the Scientific Research Foundation of Third Institute of Oceanography, SOA (Grant No. 201003)the Open Research Fund Program of Hunan Province Key Laboratory of Water, Sediment Science & Flood Hazard Prevention (Grant No. 2010SS03)
文摘The hydrodynamic behaviors of a floating breakwater consisting of a rectangular pontoon and horizontal plates are studied theoretically. The fluid motion is idealized as two-dimensional linear potential flow. The motions of the floating breakwater are assumed to be two-dimensional in sway, heave, and roll. The solution to the fluid motion is derived by transforming the governing differential equation into the integral equation on the boundary in time domain with the Green's function method. The motion equations of the floating breakwater are established and solved with the fourth-order Runge-Kutta method to obtain the displacement and velocity of the breakwater. The mooring forces are computed with the static method. The computational results of the wave transmission coefficient, the motion responses, and the mooring forces of the pontoon-plate floating breakwater are given. It is indicated that the relative width of the pontoon is an important factor influencing the wave transmission coefficient of the floating breakwater. The transmission coefficient decreases obviously as the relative width of the pontoon increases. The horizontal plates help to reduce the wave transmission over the floating breakwater. The motion responses and the mooring forces of the pontoon-plate floating breakwater are less than those of the pontoon floating breakwater. The mooring force at the offshore side is larger than that at the onshore side.
基金the support of the National Natural Science Foundation of China (Grant No. 51309179)the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA051705)+2 种基金the International S&T Cooperation Program of China (Grant No. 2012DFA70490)the State Key Laboratory of Hydraulic Engineering Simulation and Safety (Tianjin University)the Tianjin Municipal Natural Science Foundation (Grant Nos. 14JCQNJC07000 and 13JCYBJC19100)
文摘An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For this new system, most of collision energy is absorbed through the displacement of floating platforms. In order to illustrate the validity of the system, a series of model tests were conducted at a scale of 1:40. The coupled motion characteristics of the floating mooring platforms were discussed under regular and irregular waves, and the influences of wave direction and other characteristics on dynamic response of the system were analyzed. The results show that the mooring system is safest at 0° of wave incident angle, whereas the most dangerous mooring state occurs at 90° of wave incident angle. Motion responses increase with the increase of wave height, but are not linearly related to changes in wave height.
基金financial support from the National Natural Science Foundation of China (Nos.51709246, U1806229, 51809244, and 51609220)the Fundamental Research Funds for the Central Universities (No.201713031)。
文摘In this paper, a panel method based on three dimensional potential flow theory is used to study the problem of wave added resistance. The time-domain motion response of Wigely III ship in head waves is calculated by AQWA, and then the wave added resistance of ship is obtained by near-field pressure integration method. By comparing the calculated results with the experimental data in literature, it is shown that the variation trend and peak value are in good agreement, and the accuracy and efficiency meet the research requirements. Based on the above mentioned method, the wave added resistance of a deep-V hybrid monohull in head waves is studied. The motions and wave added resistances of the deep-V hybrid monohull and the deep-V original ship advancing in head waves with various forward speed and wave frequencies are calculated and analyzed. The results show that the longitudinal motion response of the deep-V hybrid monohull is effectively suppressed and the wave added resistance is obviously reduced, the new type of ship has good engineering application prospects. The present method provides an approach of satisfactory accuracy and efficiency to predict wave added resistance of ships voyaging in waves.
基金financially supported by the National Natural Science Foundation of China (Grant No.52171274)。
文摘The three-bucket jacket foundation is a new type of foundation for offshore wind turbine that has the advantages of fast construction speed and suitability for deep water. The study of the hoisting and launching process is of great significance to ensure construction safety in actual projects. In this paper, a new launching technology is proposed that is based on the foundation of the three-bucket jacket for offshore wind turbine. A complete time domain simulation of the launching process of three-bucket jacket foundation is carried out by a theoretical analysis combined with hydrodynamic software Moses. At the same time, the effects of different initial air storage and sea conditions on the motion response of the structure and the hoisting cable tension are studied. The results show that the motion response of the structure is the highest when it is lowered to 1.5 times the bucket height. The natural period of each degree of freedom of the structure increases with the increase of the lowering depth. The structural motion response and the hoisting cable tension vary greatly in the early phases of Stages Ⅰ and Ⅲ, smaller in Stage Ⅱ, and gradually stabilize in the middle and late phases of Stage Ⅲ.
文摘In this paper, the underwater vehicle, sling and the mother ship are considered as a single degree of freedom system connected by a spring. Through the analysis of this system, a physical model is established, which describes the motion of the vehicle caused by the ship motion and wave motion. Furthermore, a mathematical model based on this physical model is obtained, and a numerical solution program is made. As an example, a practical launch and recovery system fbr an underwater robot is calculated by use of the program, and the motion track of the robot is obtained.
基金support of the National Natural Science Foundation of China (No.51875540)。
文摘Mobile observation platforms are widely used in oceanographic and marine resource exploration and other applications. Wave Glider is a mobile platform that can transform wave energy into locomotion power and overcome the bottleneck of low energy supply. Wave Glider has recently been applied to tow underwater sensors fulfilling observation tasks. In this paper, the dynamic system of Wave Glider with a towed body is studied by applying multibody mechanics, and the relevant motion conditions of the system are investigated. Dynamic models of Wave Glider with a towed body and tether are first developed individually and then integrated into a whole model. The numerical method is used to obtain the dynamic responses and assess performance of the towed body pulled by the submerged glider of Wave Glider. The effects of sea state, mass of the towed body, and length of the towed cable are investigated on the basis of simulation results. This work can be used for the design and analysis of Wave Glider-towed body systems.
文摘With the continuous utilization of offshore wind resources,the installation depth and capacity of offshore wind turbines are increasing.In order to meet construction requirements of renewable energy,offshore wind farms are bound to develop further and deeper into the sea.As a result,a novel kind of power generation equipment,Floating Offshore Wind Turbines(FOWT),emerges as the times require.Consequently,this paper provides an objective comment on some key scientific difficulties.Firstly,The statistics and forecast of the market demand and installed capacity of offshore wind energy show a steady growth.After that,the advantages of constructing FOWT and most floating projects in various countries are summarized.And then,the reconstruction design of blades is reviewed under“Reynolds number”and“Froude number”similarity criterion,which is a prerequisite for achieving specific aerodynamic performance.So far,this paper focuses on aerodynamic researches,including aerodynamic forces and flow fields.On this basis,pitch angle control strategies are proposed to reduce aerodynamic forces on the premise of ensuring power generations.Finally,some other joint science problems to be solved are listed.Whether theoretical analysis,numerical simulations,ocean engineering basin tests,wind tunnel experiments or prototype sea measurements,FOWT is expected to break through various obstacles and finally achieve efficient and stable commercial operations.