期刊文献+
共找到2,768篇文章
< 1 2 139 >
每页显示 20 50 100
Bidirectional rotating direct-current triboelectric nanogenerator with self-adaptive mechanical switching for harvesting reciprocating motion
1
作者 Donghan Lee Joonmin Chae +6 位作者 Sumin Cho Jong Woo Kim Awais Ahmad Mohammad Rezaul Karim Moonwoo La Sung Jea Park Dongwhi Choi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期324-335,共12页
Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic device... Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices. 展开更多
关键词 direct-current triboelectric nanogenerator mechanical rectification self-adaptive mechanical design harvesting reciprocation motion
下载PDF
Improved Arithmetic Optimization Algorithm with Multi-Strategy Fusion Mechanism and Its Application in Engineering Design
2
作者 Yu Liu Minge Chen +3 位作者 Ran Yin Jianwei Li Yafei Zhao Xiaohua Zhang 《Journal of Applied Mathematics and Physics》 2024年第6期2212-2253,共42页
This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a mul... This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm. 展开更多
关键词 Arithmetic Optimization Algorithm Adaptive Balance Factor Spiral Search Brownian motion Whale Fall mechanism
下载PDF
Double deck bridge behavior and failure mechanism under seismic motions using nonlinear analyzes 被引量:7
3
作者 Shirin Alali Li Jianzhong Guo Guanzhong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第3期447-461,共15页
This paper investigates the behavior and the failure mechanism of a double deck bridge constructed in China through nonlinear time history analysis. A parametric study was conducted to evaluate the influence of differ... This paper investigates the behavior and the failure mechanism of a double deck bridge constructed in China through nonlinear time history analysis. A parametric study was conducted to evaluate the influence of different structural characteristics on the behavior of the double deck bridge under transverse seismic motions, and to detect the effect of bi- directional loading on the seismic response of this type of bridge. The results showed that some characteristics, such as the variable lateral stiffness, the foundation modelling, and the longitudinal reinforcement ratio of the upper and lower columns of the bridge pier bents have a major impact on the double deck bridge response and its failure mechanism under transverse seismic motions. It was found that the soft story failure mechanism :is not unique to the double deck bridge and its occurrence is related to some conditions and structural characteristics of the bridge structure. The analysis also showed that the seismic vulnerability of the double deck bridge under bi-directional loading: was severely increased compared to the bridge response under unidirectional transverse loading, and out-of-phase movements were triggered between adjacent girders. 展开更多
关键词 double deck bridge seismic response nonlinear time history analysis soft story mechanism bidirectional motion
下载PDF
Dynamic Analysis of High-Speed Boat Motion Simulator by a Novel 3-DoF Parallel Mechanism with Prismatic Actuators Based on Seakeeping Trial 被引量:3
4
作者 Ali Pirouzfar Javad Enferadi Masoud Dehghan 《Journal of Marine Science and Application》 CSCD 2018年第2期178-191,共14页
In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recor... In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recorded the motion parameters of the HSB by gyroscope and accelerometer sensors,while using a special data acquisition technique.Additionally,a Chebychev highpass filter was applied as a noise filter to the accelerometer sensor.Then,a novel 3 degrees of freedom(DoF)parallel mechanism(1T2R)with prismatic actuators is proposed and analyses were performed on its inverse kinematics,velocity,and acceleration.Finally,the inverse dynamic analysis is presented by the principle of virtual work,and the validation of the analytical equations was compared by the ADAMS simulation software package.Additionally,according to the recorded experimental data of the HSB,the feasibility of the proposed novel parallel mechanism motion simulator of the HSB,as well as the necessity of using of the washout filters,was explored. 展开更多
关键词 motion simulators Parallel mechanism HIGH-SPEED BOAT SEAKEEPING TRIAL INVERSE dynamics Virtualwork
下载PDF
MECHANISM DESIGN AND MOTION ANALYSIS OF A SPHERICAL MOBILE ROBOT 被引量:17
5
作者 Zhan Qiang Jia Chuan +1 位作者 Ma Xiaohui Zhai Yutao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期542-545,共4页
A new spherical mobile robot BHQ-1 is designed. The spherical robot is driven by two internally mounted motors that induce the ball to move straight and turn around on a fiat surface. A dynamic model of the robot is d... A new spherical mobile robot BHQ-1 is designed. The spherical robot is driven by two internally mounted motors that induce the ball to move straight and turn around on a fiat surface. A dynamic model of the robot is developed with Lagrange method and factors affecting the driving torque of two motors are analyzed. The relationship between the turning radius of the robot and the length of two links is discussed in order to optimize its mechanism design. Simulation and experimental results demonstrate the good controllability and motion performance of BHQ-1. 展开更多
关键词 Spherical mobile robot mechanism design motion analysis
下载PDF
SEMANTIC NETWORK PRESENTATION OF MECHANICAL MOTION SCHEME AND ITS MECHANISM TYPES SELECTION METHOD 被引量:2
6
作者 Ye Zhigang Zou Huijun +1 位作者 Zhang Qing Tian Yongli School of Mechanical Engineering,Shanghai Jiaotong University,Shanghai 200030, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期253-256,共4页
The presentation method of the mechanical motion scheme must support thewhole process of conceptual design. To meet the requirement, a semantic network method is selectedto represent process level, action level, mecha... The presentation method of the mechanical motion scheme must support thewhole process of conceptual design. To meet the requirement, a semantic network method is selectedto represent process level, action level, mechanism level and relationships among them. Computeraided motion cycle chart exploration can be realized by the representation and revision of timecoordination of mechanism actions and their effect on the design scheme. The uncertain reasoningtechnology based on semantic network is applied in the mechanism types selection of the needledriving mechanism of industrial sewing mechanism, and the application indicated it is correct,useful and advance. 展开更多
关键词 Semantic network Scheme design Closeness degree motion cycle chart mechanical motion scheme
下载PDF
Innovative design and motion mechanism analysis for a multi-moving state autonomous underwater vehicles 被引量:1
7
作者 GAO Fu-dong HAN Yan-yan +1 位作者 WANG Hai-dong JI Gang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1133-1143,共11页
In order to achieve the functional requirements of multi-moving state, a new autonomous underwater vehicle(AUV) provided with the functions such as the submarine vectorial thrust, landing on the sea bottom, wheel driv... In order to achieve the functional requirements of multi-moving state, a new autonomous underwater vehicle(AUV) provided with the functions such as the submarine vectorial thrust, landing on the sea bottom, wheel driving on the ground and crawling on the ground was designed. Then five new theories and methods were proposed about the motion mechanism of the AUV such as vectorial thruster technology, design of a new wheel propeller, kinematics and dynamics, navigation control and the ambient flow field in complex sea conditions, which can all conquer conventional technique shortages and predict the multi-moving state performance under wave disturbance. The theoretical research can realize the results such as a vectorial transmission shaft with the characteristics of spatial deflexion and continual circumgyratetion, parameterized design of the new wheel propeller with preferable open-water performance and intensity characteristics satisfying multi-moving state requirements, motion computation and kinetic analysis of AUV's arbitrary postures under wave disturbance, a second-order sliding mode controller with double-loop structure based on dynamic boundary layer that ensures AUV's trajectory high-precision tracking performance under wave disturbance, fast and exact prediction of the ambient flow field characteristics and the interaction mechanism between AUV hull and wheel propellers. The elaborate data obtained from the theoretical research can provide an important theoretical guidance and technical support for the manufacture of experimental prototype. 展开更多
关键词 multi-moving state autonomous UNDERWATER vehicle INNOVATIVE design motion mechanism wave DISTURBANCE
下载PDF
Focal mechanism of Luding M 6.8 earthquake, September 2022 and analysis of the loading role of the tectonic stress on the seismogenic fault
8
作者 Yansong Hu Zhenyue Li +1 位作者 Ruifeng Liu Zibo Wang 《Earthquake Research Advances》 CSCD 2023年第3期1-10,共10页
To reveal the seismogenic mechanism of the Luding earthquake, we employed the 118 China Seismic Network stations to collect the P-wave polarity data from each station, which was then used in the P-wave first motion ap... To reveal the seismogenic mechanism of the Luding earthquake, we employed the 118 China Seismic Network stations to collect the P-wave polarity data from each station, which was then used in the P-wave first motion approach to calculate the focal mechanism solution of the M6.8 Luding earthquake that occurred on September 5,2022. We have also studied the loading effect of tectonic stress on the Luding earthquake fault based on the stress field data for the research area. The results indicate that this earthquake was a strike-slip type, the nodal plane I:strike 167°, dip angle 78°, slip angle 2°;Nodal plane II: strike 77°, dip angle 88°, slip angle 168°. The two fault planes’ instability coefficients of the Luding earthquake are examined considering the region’s background stress field’s condition. The nodal plane I in the Moho circle is discovered to practically coincide with the Coulomb failure line and the tangent point of the Moho circle, indicating that this nodal plane has a high instability coefficient compared to the nodal plane II. The conclusion is that the nodal plane I has a higher likelihood of being the seismogenic fault plane, which is congruent with the seismogenic fault plane suggested by the aftershock distribution, the earthquake radiation energy distribution of a single station, and seismic intensity distribution.The Luding earthquake’s focal mechanism is highly like the theoretical focal mechanism of the fault situated at the location where the Coulomb failure line intersects the Mohr circle, demonstrating that background stress is what caused the earthquake. The substantial fault instability and similarity between the solved and theoretical focal mechanisms make it easier to comprehend the loading effect of tectonic stress on the Luding earthquake fault. 展开更多
关键词 Luding M 6.8 earthquake P-wave first motion Focal mechanism Background stress
下载PDF
Mechanism Design and Motion Analysis of Heavy⁃Load Transfer Robot with Parallel Four⁃Bar Mechanism 被引量:1
9
作者 ZHANG Jing WANG Dongbao +2 位作者 WU Guangping GUO Hongwei LIU Rongqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第5期606-618,共13页
Heavy-load transfer robots are widely used in automobile production and machinery manufacturing to improve production efficiency.In order to meet the needs of large billet transfer,a 4-DOF transfer robot is designed i... Heavy-load transfer robots are widely used in automobile production and machinery manufacturing to improve production efficiency.In order to meet the needs of large billet transfer,a 4-DOF transfer robot is designed in this paper,which consists of parallel four-bar mechanisms.The Jacobian matrix referring to the mapping matrix from the joint velocity to the operating space velocity of the transfer robot can be solved by the differential-vector method.The mean value of the Jacobian matrix condition number in the workspace is used as the global performance index of the robot velocity and the optimization goal.The constraint condition is established based on the actual working condition.Then the linkage length optimization is carried out to decrease the length of the linkage and to increase the global performance index of velocity.The total length of robot rods is reduced by 6.12%.The global performance index of velocity is improved by 45.15%.Taking the optimized rod length as the mechanism parameter,the distribution of the motion space of the transfer robot is obtained.Finally,the results show that the proposed method for establishing the Jacobian matrix of the lower-mobility robot and for the optimization of the rods based on the velocity global performance index is accurate and effective.The workspace distribution of the robot meets the design requirements. 展开更多
关键词 parameter optimization motion analysis mechanism design transfer robot heavy-load
下载PDF
Precise robust motion control of cell puncture mechanism driven by piezoelectric actuators with fractional-order nonsingular terminal slidingmode control 被引量:3
10
作者 Shengdong Yu Hongtao Wu +2 位作者 Mingyang Xie Haiping Lin Jinyu Ma 《Bio-Design and Manufacturing》 SCIE CSCD 2020年第4期410-426,共17页
A novel robust controller is proposed in this study to realize the precise motion control of a cell puncture mechanism(CPM)driven by piezoelectric ceramics(PEAs).The entire dynamic model of CPM is constructed based on... A novel robust controller is proposed in this study to realize the precise motion control of a cell puncture mechanism(CPM)driven by piezoelectric ceramics(PEAs).The entire dynamic model of CPM is constructed based on the Bouc–Wen model,and the nonlinear part of the dynamic model is optimized locally to facilitate the construction of a robust controller.A model-based,nonlinear robust controller is constructed using time-delay estimation(TDE)and fractional-order nonsingular terminal sliding mode(FONTSM).The proposed controller does not require prior knowledge of unknown disturbances due to its real-time online estimation and compensation of unknown terms by using the TDE technology.The controller also has finite-time convergence and high-precision trajectory tracking capabilities due to FONTSM manifold and fast terminal sliding mode-type reaching law.The stability of the closed-loop system is proved by Lyapunov stability theory.Computer simulation and hardware-in-loop simulation experiments of CPM verify that the proposed controller outperforms traditional terminal sliding mode controllers,such as the integer-order or model-free controller.The proposed controller can also continuously output without chattering and has high control accuracy.Zebrafish embryo is used as a verification target to complete the cell puncture experiment.From the engineering application perspective,the proposed control strategy can be effectively applied in a PEA-driven CPM. 展开更多
关键词 Cell puncture mechanism(CPM) Piezoelectric actuator(PEA) Robust motion control Fractional-order nonsingular terminal sliding mode(FONTSM) Time-delay estimation(TDE)
下载PDF
Experimental Study of the Motion Modes of a Planar Mechanical System with Multi-Clearance Revolute Joints
11
作者 Kifatsoa Kolani Mutuku Muvengei +1 位作者 Joshua Ngoret James Kimotho 《Open Journal of Applied Sciences》 2023年第11期2014-2031,共18页
Clearances in joints of a mechanical multibody system can induce impulsive forces, leading to vibrations that compromise the system’s reliability, stability, and lifespan. Through dynamic analysis, designers can inve... Clearances in joints of a mechanical multibody system can induce impulsive forces, leading to vibrations that compromise the system’s reliability, stability, and lifespan. Through dynamic analysis, designers can investigate the effects of the clearances on the dynamics of the multibody system. A revolute joint with clearance exhibits three motions which are;free-flight, impact and continuous contact motion modes. Therefore, a multibody system with n-number of revolute clearance joints will exhibit 3n motion modes which are a combination of the three motions in each joint. This study investigates experimentally the nine motion modes in a mechanical system with two revolute clearance joints. A slider crank mechanism has been used as the demonstrative example. We observed that the experimental curve exhibits a greater impact compared to the simulation curve. In conclusion, this experimental investigation offers valuable insights into the dynamics of planar mechanical systems with multiple clearance revolute joints. Utilizing a slider-crank mechanism for data acquisition, the study successfully confirmed seven out of nine motion modes previously identified in numerical research. The missing modes are attributed to inherent complexities in real-world systems, such as journal-bearing misalignment. 展开更多
关键词 Slider Crank mechanism Dynamic Responses Revolute Clearance Joints motion Modes
下载PDF
Behaviour recognition based on the integration of multigranular motion features in the Internet of Things
12
作者 Lizong Zhang Yiming Wang +3 位作者 Ke Yan Yi Su Nawaf Alharbe Shuxin Feng 《Digital Communications and Networks》 SCIE CSCD 2024年第3期666-675,共10页
With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices,crowdsensing systems in the Internet of Things(IoT)are now conducting complicated video analy... With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices,crowdsensing systems in the Internet of Things(IoT)are now conducting complicated video analysis tasks such as behaviour recognition.These applications have dramatically increased the diversity of IoT systems.Specifically,behaviour recognition in videos usually requires a combinatorial analysis of the spatial information about objects and information about their dynamic actions in the temporal dimension.Behaviour recognition may even rely more on the modeling of temporal information containing short-range and long-range motions,in contrast to computer vision tasks involving images that focus on understanding spatial information.However,current solutions fail to jointly and comprehensively analyse short-range motions between adjacent frames and long-range temporal aggregations at large scales in videos.In this paper,we propose a novel behaviour recognition method based on the integration of multigranular(IMG)motion features,which can provide support for deploying video analysis in multimedia IoT crowdsensing systems.In particular,we achieve reliable motion information modeling by integrating a channel attention-based short-term motion feature enhancement module(CSEM)and a cascaded long-term motion feature integration module(CLIM).We evaluate our model on several action recognition benchmarks,such as HMDB51,Something-Something and UCF101.The experimental results demonstrate that our approach outperforms the previous state-of-the-art methods,which confirms its effective-ness and efficiency. 展开更多
关键词 Behaviour recognition motion features Attention mechanism Internet of things Crowdsensing
下载PDF
Development of a Leg Mechanism for Soft Landing Based on Biological Motion
13
作者 KIMURA Hitoshi OTAKI Yoshihiko +1 位作者 ITO Shusaku INOU Norio 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期731-737,共7页
With jumping mechanisms,soft landing motion is important to protect loads and the mechanisms.This study proposes a leg mechanism for soft landing based on biological motion.Human jumping motion with a load suggests a ... With jumping mechanisms,soft landing motion is important to protect loads and the mechanisms.This study proposes a leg mechanism for soft landing based on biological motion.Human jumping motion with a load suggests a unique motion for soft landing.The landing model consists of two periods.Jerk is minimized in the first period and force is minimized in the second period.In comparison with other landing models,this model is specialized for soft landing motion protecting an objective part.Given all mechanisms have mass,such model is useful in practical application.For the purpose of realizing soft landing motion,this study proposes a new leg mechanism.The mechanism achieves quick variable transmission with cam and wire.Design process of the cam is explained with dynamics and computation.With the calculated cam shape,the leg mechanism can be driven by constant input voltage for simple control.Robustness against height change is also verified with landing simulation.With 50mm falling experiment,prototype leg mechanism performed soft landing without bounce motion and large sound.The acceleration profile of the body also agrees with the proposed soft landing model. 展开更多
关键词 soft landing biological motion leg mechanism cam and wire mechanism
下载PDF
Design Principle of High-precision Flexure Mechanisms Based on Parasitic-motion Compensation
14
作者 LI Shouzhong YU Jingjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期663-672,共10页
In design of flexure mechanism, diminishing the parasitic-motion is a key point to improve the accuracy. However, most of existing topics concentrate on improving the accuracy of linear-motion flexure mechanisms via c... In design of flexure mechanism, diminishing the parasitic-motion is a key point to improve the accuracy. However, most of existing topics concentrate on improving the accuracy of linear-motion flexure mechanisms via compensating the parasitic error, but few research the multi-dimensional flexure mechanisms. A general design principle and method for high-precision flexure mechanisms based on the parasitic-motion compensation is presented, and the proposed method can compensate the parasitic rotation in company with translation, or the parasitic translation in company with rotation, or both. The crucial step for the method is that the parasitic motion of a flexure mechanism is formulated and evaluated in terms of its compliance. The overall compliance matrix of a general flexure mechanism is formulated by using screw theory firstly, then the criteria for the parasitic motions is introduced by analyzing the characteristics of the resultant compliance matrix as well as with aid of the concept of instantaneous rotation center. Subsequently, a compliance-based compensation approach for reducing parasitic-motion is addressed as the most important part. The design principles and procedure are further discussed to help with improving the accuracy of flexure mechanisms, and case studies are provided to illustrate this method. Finally, an analytical verification is provided to demonstrate that the symmetry design philosophy widely used in flexure design can effectively improve accuracy in terms of the proposed method. The proposed compensation method can be well used to diminish the parasitic-motion of multi-dimensional flexure mechanisms. 展开更多
关键词 flexure mechanism compliance matrix parasitic motion compensation
下载PDF
THE SELF-GRINDING MECHANISM AND AFFECTING FACTORS OF BULK MATERIAL IN FLUID MOTION
15
作者 俞良中 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1997年第Z1期146-151,共6页
The fluidity and classification of bulk material (loose body) were introduced, the self-grinding mechanism and the affecting factors of bulk materials in various forms of phase, state and motion were investigated. A r... The fluidity and classification of bulk material (loose body) were introduced, the self-grinding mechanism and the affecting factors of bulk materials in various forms of phase, state and motion were investigated. A rotational-flow-state centrifugal autogenous grinder was developed on the basis of applying self-grinding mechanism of bulk material,the result tested by the autogenous grinder was compared with that tested by 4R Raymond mills, and fine particles with extremely high specific area were obtained. The feasibility of the developed new-type autogenous grinder in the view of fluid motion of bulk material was proved. 展开更多
关键词 motion of bulk material self-grinding mechanism new developed mill
下载PDF
Synchronization motions of a two-link mechanism with an improved OPCL method
16
作者 韩清凯 赵雪彦 闻邦椿 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第12期1561-1568,共8页
An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of d... An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of different motion characteristics of the two-link synchronization and the effects of different control parameters on synchronous processes are investigated with numerical simulations. 展开更多
关键词 two-link mechanism controlled synchronization motions improved OPCL method
下载PDF
A Novel Method for Type Synthesis of Parallel Mechanism Without Parasitic Motion Based on 2R1T Parallel Mechanism with Rotational Bifurcation
17
作者 Jinghan Qin Chunzhan Yu +1 位作者 Zhibo Sun Lei Cao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期191-202,共12页
The parasitic motion has been widely recognized as the major drawback of the parallel mechanism.Therefore a class of 2R1T PMs(parallel mechanism)without parasitic motion has been synthesized.However,these PMs can only... The parasitic motion has been widely recognized as the major drawback of the parallel mechanism.Therefore a class of 2R1T PMs(parallel mechanism)without parasitic motion has been synthesized.However,these PMs can only rotate around two axes in sequential order.It decreases the performance of the balancing adjustment of the end-efector.In this paper,a family of 2R1T PMs without parasitic motion was reconstructed by using a novel method based on the remarkable properties of rotational bifurcation mechanisms,which can rotate in sequential order.Furthermore,some PMs rotating around two continuous axes in an arbitrary order are established by adding single joints.Taking the practicability of these structures into consideration,the workspace of 3-PRPS PM was analyzed as an example.Moreover,this study explores the practical application of the PMs without parasitic motion in developing balance mechanisms in rough-terrain fre-fghting robots.During the climbing process,the tank is adjusted to be parallel to the horizontal plane in real-time.It is proved that this kind of structure realizes continuous rotation around two rotation axes on the premise of no parasitic motion. 展开更多
关键词 Parallel mechanism Rotational bifurcation Parasitic motion Type synthesis Balance mechanism
下载PDF
Precision loss of ball screw mechanism under sliding-rolling mixed motion behavior
18
作者 QI Bao-bao CHENG Qiang +2 位作者 LI Shun-lei LIU Zhi-feng YANG Cong-bin 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1357-1376,共20页
The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss consider... The sliding-rolling mixed motion behavior degrades the ball screw’s precision at different levels.Based on the sliding-rolling mixed motion between ball and screw/nut raceway,the ball screw’s precision loss considering different given axial loading and rotational speed working conditions was investigated.Since creep and lubrication relate to sliding and rolling motion wear,the creep and lubrication characteristics are analyzed under different working conditions.Besides,the precision loss was calculated considering the sole influence of sliding behavior between ball and screw and compared with the results from other current models.Finally,research on precision loss owing to the sliding-rolling mixed motion behavior was realized under given working conditions,and suitable wear tests were carried out.The analytical results of precision loss are in good agreement with the experimental test conclusions,which is conducive to better predicting the law of precision loss in stable wear period. 展开更多
关键词 ball screw mechanism precision loss sliding-rolling mixed motion creep lubrication
下载PDF
Extension of Motion Space for Double-Screw-Drive Bending Mechanism
19
作者 Chiharu Ishii 《通讯和计算机(中英文版)》 2012年第5期507-515,共9页
关键词 运动空间 双螺杆 驱动器 机制 弯曲 方程推导 运动学问题 软件分析
下载PDF
Algebraic Structure of the Dynamical Equations of Holonomic Mechanical System in Relative Motion 被引量:2
20
作者 张毅 梅凤翔 《Journal of Beijing Institute of Technology》 EI CAS 1998年第1期12-18,共7页
Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was... Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was determined. Results and Conclusion The equations a Lie algebraic structure if any nonpotential generalized force doesn't exist while while the equations possess a Lie-admissible algebraic structure if nonpotential generalized forces exist . 展开更多
关键词 analytical mechanics holonomic system relative motion Lie-admissible algebra
下载PDF
上一页 1 2 139 下一页 到第
使用帮助 返回顶部