期刊文献+
共找到2,996篇文章
< 1 2 150 >
每页显示 20 50 100
The Finite Element Analysis and Computer Simulation of the Composite Case
1
作者 段登平 杜善义 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第1期90-93,共4页
TheFiniteElementAnalysisandComputerSimulationoftheCompositeCaseDUANDengping;DUShanyi(段登平);(杜善义)(Dcpt.ofAstro... TheFiniteElementAnalysisandComputerSimulationoftheCompositeCaseDUANDengping;DUShanyi(段登平);(杜善义)(Dcpt.ofAstronauticsandMechani... 展开更多
关键词 ss: COMPOSITE CASE finite element analysis COMPUTER simulation
下载PDF
Three-dimensional finite element analysis on effects of tunnel construction on nearby pile foundation 被引量:6
2
作者 杨敏 孙庆 +1 位作者 李卫超 马亢 《Journal of Central South University》 SCIE EI CAS 2011年第3期909-916,共8页
A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu... A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect. 展开更多
关键词 finite element analysis TUNNELLING pile foundation three-dimensional simulation displacement controlled model
下载PDF
Dynamic Finite Element Analysis for Interaction between Two Phase Saturated Soil Foundation and Platform 被引量:2
3
作者 Qian, Lingxi Zhong, Wanxie Zhang, Hongwu 《China Ocean Engineering》 SCIE EI 1993年第1期21-29,共9页
In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, t... In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, the technique of multilevel substructure is used, and the saturated soil analysis is set in the highest level substructure model. Based on these theories a dynamic finite element analysis program DIASS for the analysis of interaction between two phase ocean soil foundation and platform structures has been developed. A numerical example is given here to illustrate the influence of the pore water in soil on the structural response of an ocean platform. 展开更多
关键词 finite element method Offshore structures Porous materials Production platforms simulation Soil mechanics Soil structure interactions Structural analysis Underwater soils
下载PDF
Experimental and finite element analysis for fracture of coating layer of galvannealed steel sheet 被引量:2
4
作者 S.I.KIM J.U.HER +1 位作者 Y.C.JANG Y.LEE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第A01期111-116,共6页
Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed t... Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well. 展开更多
关键词 galvannealed steel sheet fracture simulation coating layer finite element analysis failure model
下载PDF
Application of Finite Element Analysis in Biomechanical Research of Degenerative Diseases of Lumbar Spine
5
作者 Shuyu Zhang Tianyi Bai +3 位作者 Xingxu Zhang Chao Feng Zhengpeng Liu Yilong Zhang 《Journal of Biosciences and Medicines》 2022年第3期21-33,共13页
As the elderly population continues to grow, the number of patients with low back pain is gradually increasing. Among them, Lumbar Degenerative Diseases (LDD) is one of the major contributors to low back pain. Biomech... As the elderly population continues to grow, the number of patients with low back pain is gradually increasing. Among them, Lumbar Degenerative Diseases (LDD) is one of the major contributors to low back pain. Biomechanical in vivo studies of the lumbar spine are mainly performed by implants or imaging data to record the real-time changes of form and stress on the intervertebral disc during motion. However, the current developments are slow due to the technological and ethical limitations. In vitro experiments include animal experiments and cadaver experiments, which are difficult to operate or differ greatly from normal human structures, and the results still need to be verified repeatedly to test their accuracy. As for finite element method, it is relatively low cost and can repeat the experimental results. Therefore, we believe that finite element analysis plays an extremely important role in biomechanical research, especially in analyzing the relationship between different surgical models and the degeneration caused by different mechanics. 展开更多
关键词 BIOMECHANICS Degenerative Diseases of the Lumbar Spine Animal Specimens Human Cadaver Models finite element analysis Statics analysis STRESS Range of motion (RoM)
下载PDF
Simulation of near-fault bedrock strong ground-motion field by explicit finite element method 被引量:1
6
作者 张晓志 胡进军 +1 位作者 谢礼立 王海云 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第6期687-694,共8页
Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combin... Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combination with the source time function with improved transmitting artificial boundary and with high-frequency vibration contained. The results indicate that the improved artificial boundary is stable in numerical computation and the predicted strong ground motion has a consistent characteristic with the observed motion. 展开更多
关键词 strong ground-motion field explicit finite element artificial boundary numerical simulation
下载PDF
Kinematic source model for simulation of near-fault ground motion field using explicit finite element method
7
作者 张晓志 胡进军 +1 位作者 谢礼立 王海云 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第1期19-28,共10页
This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the fi... This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc. 展开更多
关键词 strong ground motion field explicit finite element numerical simulation kinematic source model
下载PDF
COUPLED SIMULATION OF 3D ELECTRO-MAGNETO-FLOW FIELD IN HALL-HEROULT CELLS USING FINITE ELEMENT METHOD 被引量:10
8
作者 J. Li W. Liu +2 位作者 Y.Q. Lai Q.Y. Li Y.X. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第2期105-116,共12页
Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the... Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad. 展开更多
关键词 coupled simulation electromagnetic field flow field aluminum reduction cell finite element analysis
下载PDF
Finite Element Analysis of 3-D Electromagnetic Field in Bloom Continuous Casting Mold 被引量:6
9
作者 LIU Xu-dong YANG Xiao-dong +2 位作者 ZHU Miao-yong CHEN Yong YANG Su-bo 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第3期6-12,共7页
Three-dimensional finite element model of electromagnetic stirrer was built to predict magnetic field in a bloom continuous casting mold for steel during operation. The effects of current intensity, current frequency,... Three-dimensional finite element model of electromagnetic stirrer was built to predict magnetic field in a bloom continuous casting mold for steel during operation. The effects of current intensity, current frequency, and mold copper plate thickness on the magnetic field distribution in the mold were investigated. The results show that the magnetic induction intensity increases linearly with the increase in current intensity and decreases with the increase in current frequency. Increasing current intensity and frequency is available in increasing the electromagnetic force. The Joule heat decreases gradually from surface to center of bloom, and a maximum Joule heat can be found on corner of bloom. The prediction of magnetic induction intensity is in good agreement with the measured values. 展开更多
关键词 MOLD electromagnetic stirring finite element analysis numerical simulation
下载PDF
A finite element analysis of the stress distribution to the mandible from impact forces with various orientations of third molars 被引量:3
10
作者 Yun-feng LIU Russell WANG +1 位作者 Dale A.BAUR Xian-feng JIANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2018年第1期38-48,共11页
Objective: To investigate the stress distribution to the mandible, with and without impacted third molars(IM3 s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline o... Objective: To investigate the stress distribution to the mandible, with and without impacted third molars(IM3 s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline or from the body of the mandible. Materials and methods: A 3 D mandibular virtual model from a healthy dentate patient was created and the mechanical properties of the mandible were categorized to 9 levels based on the Hounsfield unit measured from computed tomography(CT) images. Von Mises stress distributions to the mandibular angle and condylar areas from static impact forces(Load I-front blow and Load II left blow) were evaluated using finite element analysis(FEA). Six groups with IM3 were included: full horizontal bony, full vertical bony, full 450 mesioangular bony, partial horizontal bony, partial vertical, and partial 450 mesioangular bony impaction, and a baseline group with no third molars. Results: Von Mises stresses in the condyle and angle areas were higher for partially than for fully impacted third molars under both loading conditions, with partial horizontal IM3 showing the highest fracture risk. Stresses were higher on the contralateral than on the ipsilateral side. Under Load II, the angle area had the highest stress for various orientations of IM3 s. The condylar region had the highest stress when IM3 s were absent. Conclusions: High-impact forces are more likely to cause condylar rather than angular fracture when IM3 s are missing. The risk of mandibular fracture is higher for partially than fully impacted third molars, with the angulation of impaction having little effect on facture risk. 展开更多
关键词 finite element analysis Third molar MANDIBLE Biomechanical simulation
原文传递
3D Finite Element Simulation of Tunnel Boring Machine Construction Processes in Deep Water Conveyance Tunnel 被引量:4
11
作者 钟登华 佟大威 《Transactions of Tianjin University》 EI CAS 2009年第2期101-107,共7页
Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excav... Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability. 展开更多
关键词 water conveyance tunnel tunnel boring machine CONSTRUCTION 3D finite element method numerical analysis simulation
下载PDF
Three-Dimensional Finite Element Numerical Simulation and Physical Experiment for Magnetism-Stress Detecting in Oil Casing 被引量:2
12
作者 MENG Fanshun ZHANG Jie +2 位作者 YANG Chaoqun YU Weizhe CHEN Yuxi 《Journal of Ocean University of China》 SCIE CAS 2015年第4期669-674,共6页
The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil i... The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment. 展开更多
关键词 oil casing damage magnetism-stress detecting magnetic anisotropy finite element analysis physical experiment relative magnetic permeability ANSYS three-dimensional numerical simulation
下载PDF
Numerical wear study of metal-on-ultrahigh molecular weight polyethylene-based cervical total disc arthroplasty by coupling finite element analysis and multi-body dynamics 被引量:1
13
作者 Hua Xin Lei Zhang +2 位作者 Hao Diao Junhong Jia Zhongmin Jin 《Biosurface and Biotribology》 EI 2021年第4期251-260,共10页
In this study,the effects of in vivo(head flexion-extension,lateral bending,and axial rotation)and in vitro(ISO 18192-1)working conditions on the wear of ultrahigh mo-lecular weight polyethylene(UHWMPE)-based cervical... In this study,the effects of in vivo(head flexion-extension,lateral bending,and axial rotation)and in vitro(ISO 18192-1)working conditions on the wear of ultrahigh mo-lecular weight polyethylene(UHWMPE)-based cervical disc prosthesis were studied via numerical simulation.A finite-element-based wear prediction framework was built by using a sliding distance and contact area dependent Archard wear law.Moreover,a pre-developed cervical spine multi-body dynamics model was incorporated to obtain the in vivo conditions.Contact mechanic analysis stated that in vitro conditions normally led to a higher contact stress and a longer sliding distance,with oval or crossing-path-typed sliding track.In contrast,in vivo conditions led to a curvilinear-typed sliding track.In general,the predicted in vivo wear rate was one order of magnitude smaller than that of in vitro.According to the yearly occurrence of head movement,the estimated total in vivo wear rate was 0.595 mg/annual.While,the wear rate given by the ISO standard test condition was 3.32 mg/annual.There is a significant impact of loading and kinematic condition on the wear of UHMWPE prosthesis.The work conducted in the present study provided a feasible way for quantitatively assessing the wear of joint prosthesis. 展开更多
关键词 CERVICAL total DISC ARTHROPLASTY finite element analysis multi-body dynamics NUMERICAL WEAR simulation
原文传递
Rock-soil slope stability analysis by two-phase random media and finite elements 被引量:8
14
作者 Yong Liu Huawen Xiao +2 位作者 Kai Yao Jun Hu Hong Wei 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1649-1655,共7页
To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simul... To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simulate the two-phase random media, such that the soil(or rock) volume fraction and the inclination of the soil layer can be examined. The finite element method with random media incorporated as the material properties is used to determine the factor of safety of the rock-soil slope. Monte-Carlo simulations are used to estimate the statistical characteristics of the factor of safety. The failure mode of the rock-soil slope is examined by observing the maximum principal plastic strain at incipient slope failure. It is found that the critical surface of a rock-soil slope is fairly irregular, and it significantly differs from that of a pure soil slope. The factor of safety is sensitive to the soil volume faction, but it is predictable. The average factor of safety could be well predicted by the weighted harmonic average between the strength of soil and rock; the prediction model is practical and simple. Parametric studies on the inclination of the soil layer demonstrate that the most instable scenario occurs when the slope angle is consistent with the inclination of the soil layer. 展开更多
关键词 SLOPES stability Numerical computation STATISTICAL analysis finite-element modelling Random FIELDS Monte-Carlo simulations
下载PDF
Finite Element Analysis for In-Plane Crushing Behaviour of Aluminium Honeycombs 被引量:1
15
作者 ZHU Feng ZHAO Longmao LU Guoxing 《Transactions of Tianjin University》 EI CAS 2006年第B09期142-146,共5页
A number of finite element simulations were performed to analyze the in-plane crushing behaviour of aluminium honeycombs and the results are presented and discussed. The simulations include both X1 and X2 cases. All t... A number of finite element simulations were performed to analyze the in-plane crushing behaviour of aluminium honeycombs and the results are presented and discussed. The simulations include both X1 and X2 cases. All the analyses are quasi-static, and can be divided into three groups, which are designed to investigate the effects of cell size, foil thickness and yield stress of the foil material, respectively, on the structural response of honeycombs. The result indicates that these factors can significantly affect the plateau stresses of honeycomb cellular structures in both directions, and the plateau stresses in X2 direction are slightly smaller than those in X1 direction. The simulation results were further compared with published theoretical predictions and show higher values. The difference was then analyzed and a new expression for the plateau stress of honeycombs was suggested. 展开更多
关键词 finite element analysis/simulation aluminium honeycomb crushing/compression behaviour LS- DYNA
下载PDF
An instrument for methodological quality assessment of single-subject finite element analysis used in computational orthopaedics 被引量:2
16
作者 Duo Wai-Chi Wong Tony Lin-Wei Chen +5 位作者 Yinghu Peng Wing-Kai Lam Yan Wang Ming Ni Wenxin Niu Ming Zhang 《Medicine in Novel Technology and Devices》 2021年第3期113-119,共7页
The methodological quality of subject-specific finite element analysis papers depends on the rigor of the study design and detailed description of key elements,while assessment instruments are often confined to clinic... The methodological quality of subject-specific finite element analysis papers depends on the rigor of the study design and detailed description of key elements,while assessment instruments are often confined to clinical trials or quasi-experiments.This study aims to present an instrument for methodological quality assessment of singlesubject finite element analysis used in computational orthopaedics(MQSSFE).Based upon existing instruments and relevant review papers,a pilot version was developed consisting of 37 items with 6 domains,including study design and presentation of findings,subject recruitment,model reconstruction and configuration,boundary and loading conditions(simulation),model verification and validation,and model assumption and validity.We interviewed four experts in the field to assess the face validity and refined the instrument.The instrument was tested for interrater reliability among two assessors on nine finite element study papers.Also,the criterion validity was evaluated by comparing the similarity of the MQSSFE and the modified Down and Black instrument.The intraclass correlation coefficient was 0.965,while the MQSSFE was significantly moderately correlated with the modified Down and Black instruments(r=0.61).We believed that MQSSFE was adequately appropriate,reliable,and valid for assessing the methodological quality for finite element studies used in computational orthopaedics.The instrument could facilitate quality assessment in the systematic reviews of finite element models and checklists for fidelity. 展开更多
关键词 finite element model simulation Validation and verification Mesh convergence Uncertainty analysis
原文传递
Model of Underground Ant Nest Structure Using Static and Dynamic Finite Element Analysis
17
作者 Wenjun Qu Wei Zhou +1 位作者 Peng Zhu Zhi Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第6期717-730,共14页
This paper focuses on the structural characteristics of ant nests,which are complex structures.Natural underground ant nests generally have good air circulation,pressure resistance, waterproof properties,thermal insul... This paper focuses on the structural characteristics of ant nests,which are complex structures.Natural underground ant nests generally have good air circulation,pressure resistance, waterproof properties,thermal insulation and a favorable temperature and relative humidity. Additionally,ant nests are often surrounded by trees and other natural barriers.In this study, the natural underground ant nests of Iridomyrmex anceps were gathered from different collection sites.Manual cutting and frozen computer numerical control milling were performed on the ant nests in a laboratory.The internal structure of each nest was measured and recorded,and then, the 2D and 3D numerical structure models of the Iridomyrmex anceps nest were created.The static and dynamic simulation analysis of an underground ant nest structure was performed by using finite element analysis software (ABAQUS),and the mechanical properties of the ant nest were discussed.The underground ant nest structure effectively resisted the additional stress due to external static and live loads,and the ant nest was not completely destroyed. 展开更多
关键词 UNDERGROUND ANT NEST Iridomyrmex anceps FROZEN CNC MILLING finite element analysis Static simulation Dynamic simulation
原文传递
Finite Element Analysis on Vibration Characteristics of an Offshore Floating Breakwater
18
作者 Hongyi Yan Dingguo Zhang +1 位作者 Liang Li Xiaoyu Luo 《Structural Durability & Health Monitoring》 EI 2020年第1期19-36,共18页
The construction of seaside facilities is a hot topic in the field of ocean engineering.In this paper,a new type of floating breakwater is designed by 3D-CAD geometric modeling.Based on the vibration theory and finite... The construction of seaside facilities is a hot topic in the field of ocean engineering.In this paper,a new type of floating breakwater is designed by 3D-CAD geometric modeling.Based on the vibration theory and finite element tech-nology,the floating breakwater model is optimized,and the modal analysis of the structure with the bracket as main body and blades as functional attachments is carried out.Natural frequencies and mode shapes of the blades are fi rst calculated,and the effects of the natural frequencies in both dry and wet conditions are taken into account.Modal analysis and harmonic response analysis of the bracket with different lengths by removing the blades are also carried out,and the different var-iations of the natural frequencies between several bracket units are compared.The responses of the key position of the bracket under different loads and different bracket lengths are analyzed.The influence of liquid on the natural frequency of the blades and the influence of the length of the bracket on the natural fre-quency of the bracket are discussed in the fluid-solid coupling state.Research in this paper provides a data basis for the safety assessment of the breakwater construction. 展开更多
关键词 BREAKWATER modal analysis fuid-structure interaction finite element simulation
下载PDF
FE Dynamic Analysis Using Moving Support Element on Multi-Span Beams Subjected to Support Motions
19
作者 Yong-Woo Kim Seoung Yeal Lee 《Modern Mechanical Engineering》 2015年第4期112-121,共10页
In the present study, finite element dynamic analysis or time history analysis of two-span beams subjected to asynchronous multi-support motions is carried out by using the moving support finite element. The elemental... In the present study, finite element dynamic analysis or time history analysis of two-span beams subjected to asynchronous multi-support motions is carried out by using the moving support finite element. The elemental equation of the element is based on total displacements and is derived under the concept of the quasi-static displacement decomposition. The use of moving support element shows that the element is very simple and convenient to represent continuous beam moving, deforming and vibrating simultaneously due to support motions. The comparison between the numerical results and analytical solutions indicates that the FE result agrees with the analytical solution. 展开更多
关键词 MOVING SUPPORT element SUPPORT motionS Rayleigh-Damped Bernoulli-Euler BEAM MULTI-SPAN BEAM Time History analysis finite element Method
下载PDF
Mechanical Response of the Composite Material—Concrete Interface in FRP-Strengthened Concrete Elements:Finite Element Simulation
20
作者 Todor Zhelyazov 《Journal of Mechanics Engineering and Automation》 2018年第1期30-34,共5页
In structural elements strengthened with Fiber Reinforced Polymer(FRP),debonding failure modes should be taken into consideration.Under specific circumstances,they may provoke a global,premature failure of the structu... In structural elements strengthened with Fiber Reinforced Polymer(FRP),debonding failure modes should be taken into consideration.Under specific circumstances,they may provoke a global,premature failure of the structural element.In other cases,they should be accounted for in the modeling in order to obtain more accurate results.Despite the large amount of research work carried out in this field in the last few decades,debonding failure modes are still not fully understood.This contribution is focused on a numerical procedure designed to model the progressive loss of bond action between FRP and concrete.The two-stage procedure is integrated into incremental,finite element analysis.The proposed algorithm uses experimentally obtained slip-stress relationship.Predefined failure criteria are used to predict the local bond failure.In the reported case study,an experimental set-up widely employed to investigate debonding is modeled.Results obtained by finite element analysis are discussed. 展开更多
关键词 FRP-concrete interface DEBONDING finite element analysis and simulation
下载PDF
上一页 1 2 150 下一页 到第
使用帮助 返回顶部