A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu...A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.展开更多
In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, t...In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, the technique of multilevel substructure is used, and the saturated soil analysis is set in the highest level substructure model. Based on these theories a dynamic finite element analysis program DIASS for the analysis of interaction between two phase ocean soil foundation and platform structures has been developed. A numerical example is given here to illustrate the influence of the pore water in soil on the structural response of an ocean platform.展开更多
Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed t...Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.展开更多
As the elderly population continues to grow, the number of patients with low back pain is gradually increasing. Among them, Lumbar Degenerative Diseases (LDD) is one of the major contributors to low back pain. Biomech...As the elderly population continues to grow, the number of patients with low back pain is gradually increasing. Among them, Lumbar Degenerative Diseases (LDD) is one of the major contributors to low back pain. Biomechanical in vivo studies of the lumbar spine are mainly performed by implants or imaging data to record the real-time changes of form and stress on the intervertebral disc during motion. However, the current developments are slow due to the technological and ethical limitations. In vitro experiments include animal experiments and cadaver experiments, which are difficult to operate or differ greatly from normal human structures, and the results still need to be verified repeatedly to test their accuracy. As for finite element method, it is relatively low cost and can repeat the experimental results. Therefore, we believe that finite element analysis plays an extremely important role in biomechanical research, especially in analyzing the relationship between different surgical models and the degeneration caused by different mechanics.展开更多
Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combin...Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combination with the source time function with improved transmitting artificial boundary and with high-frequency vibration contained. The results indicate that the improved artificial boundary is stable in numerical computation and the predicted strong ground motion has a consistent characteristic with the observed motion.展开更多
This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the fi...This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc.展开更多
Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the...Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad.展开更多
Three-dimensional finite element model of electromagnetic stirrer was built to predict magnetic field in a bloom continuous casting mold for steel during operation. The effects of current intensity, current frequency,...Three-dimensional finite element model of electromagnetic stirrer was built to predict magnetic field in a bloom continuous casting mold for steel during operation. The effects of current intensity, current frequency, and mold copper plate thickness on the magnetic field distribution in the mold were investigated. The results show that the magnetic induction intensity increases linearly with the increase in current intensity and decreases with the increase in current frequency. Increasing current intensity and frequency is available in increasing the electromagnetic force. The Joule heat decreases gradually from surface to center of bloom, and a maximum Joule heat can be found on corner of bloom. The prediction of magnetic induction intensity is in good agreement with the measured values.展开更多
Objective: To investigate the stress distribution to the mandible, with and without impacted third molars(IM3 s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline o...Objective: To investigate the stress distribution to the mandible, with and without impacted third molars(IM3 s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline or from the body of the mandible. Materials and methods: A 3 D mandibular virtual model from a healthy dentate patient was created and the mechanical properties of the mandible were categorized to 9 levels based on the Hounsfield unit measured from computed tomography(CT) images. Von Mises stress distributions to the mandibular angle and condylar areas from static impact forces(Load I-front blow and Load II left blow) were evaluated using finite element analysis(FEA). Six groups with IM3 were included: full horizontal bony, full vertical bony, full 450 mesioangular bony, partial horizontal bony, partial vertical, and partial 450 mesioangular bony impaction, and a baseline group with no third molars. Results: Von Mises stresses in the condyle and angle areas were higher for partially than for fully impacted third molars under both loading conditions, with partial horizontal IM3 showing the highest fracture risk. Stresses were higher on the contralateral than on the ipsilateral side. Under Load II, the angle area had the highest stress for various orientations of IM3 s. The condylar region had the highest stress when IM3 s were absent. Conclusions: High-impact forces are more likely to cause condylar rather than angular fracture when IM3 s are missing. The risk of mandibular fracture is higher for partially than fully impacted third molars, with the angulation of impaction having little effect on facture risk.展开更多
Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excav...Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability.展开更多
The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil i...The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment.展开更多
In this study,the effects of in vivo(head flexion-extension,lateral bending,and axial rotation)and in vitro(ISO 18192-1)working conditions on the wear of ultrahigh mo-lecular weight polyethylene(UHWMPE)-based cervical...In this study,the effects of in vivo(head flexion-extension,lateral bending,and axial rotation)and in vitro(ISO 18192-1)working conditions on the wear of ultrahigh mo-lecular weight polyethylene(UHWMPE)-based cervical disc prosthesis were studied via numerical simulation.A finite-element-based wear prediction framework was built by using a sliding distance and contact area dependent Archard wear law.Moreover,a pre-developed cervical spine multi-body dynamics model was incorporated to obtain the in vivo conditions.Contact mechanic analysis stated that in vitro conditions normally led to a higher contact stress and a longer sliding distance,with oval or crossing-path-typed sliding track.In contrast,in vivo conditions led to a curvilinear-typed sliding track.In general,the predicted in vivo wear rate was one order of magnitude smaller than that of in vitro.According to the yearly occurrence of head movement,the estimated total in vivo wear rate was 0.595 mg/annual.While,the wear rate given by the ISO standard test condition was 3.32 mg/annual.There is a significant impact of loading and kinematic condition on the wear of UHMWPE prosthesis.The work conducted in the present study provided a feasible way for quantitatively assessing the wear of joint prosthesis.展开更多
To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simul...To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simulate the two-phase random media, such that the soil(or rock) volume fraction and the inclination of the soil layer can be examined. The finite element method with random media incorporated as the material properties is used to determine the factor of safety of the rock-soil slope. Monte-Carlo simulations are used to estimate the statistical characteristics of the factor of safety. The failure mode of the rock-soil slope is examined by observing the maximum principal plastic strain at incipient slope failure. It is found that the critical surface of a rock-soil slope is fairly irregular, and it significantly differs from that of a pure soil slope. The factor of safety is sensitive to the soil volume faction, but it is predictable. The average factor of safety could be well predicted by the weighted harmonic average between the strength of soil and rock; the prediction model is practical and simple. Parametric studies on the inclination of the soil layer demonstrate that the most instable scenario occurs when the slope angle is consistent with the inclination of the soil layer.展开更多
A number of finite element simulations were performed to analyze the in-plane crushing behaviour of aluminium honeycombs and the results are presented and discussed. The simulations include both X1 and X2 cases. All t...A number of finite element simulations were performed to analyze the in-plane crushing behaviour of aluminium honeycombs and the results are presented and discussed. The simulations include both X1 and X2 cases. All the analyses are quasi-static, and can be divided into three groups, which are designed to investigate the effects of cell size, foil thickness and yield stress of the foil material, respectively, on the structural response of honeycombs. The result indicates that these factors can significantly affect the plateau stresses of honeycomb cellular structures in both directions, and the plateau stresses in X2 direction are slightly smaller than those in X1 direction. The simulation results were further compared with published theoretical predictions and show higher values. The difference was then analyzed and a new expression for the plateau stress of honeycombs was suggested.展开更多
The methodological quality of subject-specific finite element analysis papers depends on the rigor of the study design and detailed description of key elements,while assessment instruments are often confined to clinic...The methodological quality of subject-specific finite element analysis papers depends on the rigor of the study design and detailed description of key elements,while assessment instruments are often confined to clinical trials or quasi-experiments.This study aims to present an instrument for methodological quality assessment of singlesubject finite element analysis used in computational orthopaedics(MQSSFE).Based upon existing instruments and relevant review papers,a pilot version was developed consisting of 37 items with 6 domains,including study design and presentation of findings,subject recruitment,model reconstruction and configuration,boundary and loading conditions(simulation),model verification and validation,and model assumption and validity.We interviewed four experts in the field to assess the face validity and refined the instrument.The instrument was tested for interrater reliability among two assessors on nine finite element study papers.Also,the criterion validity was evaluated by comparing the similarity of the MQSSFE and the modified Down and Black instrument.The intraclass correlation coefficient was 0.965,while the MQSSFE was significantly moderately correlated with the modified Down and Black instruments(r=0.61).We believed that MQSSFE was adequately appropriate,reliable,and valid for assessing the methodological quality for finite element studies used in computational orthopaedics.The instrument could facilitate quality assessment in the systematic reviews of finite element models and checklists for fidelity.展开更多
This paper focuses on the structural characteristics of ant nests,which are complex structures.Natural underground ant nests generally have good air circulation,pressure resistance, waterproof properties,thermal insul...This paper focuses on the structural characteristics of ant nests,which are complex structures.Natural underground ant nests generally have good air circulation,pressure resistance, waterproof properties,thermal insulation and a favorable temperature and relative humidity. Additionally,ant nests are often surrounded by trees and other natural barriers.In this study, the natural underground ant nests of Iridomyrmex anceps were gathered from different collection sites.Manual cutting and frozen computer numerical control milling were performed on the ant nests in a laboratory.The internal structure of each nest was measured and recorded,and then, the 2D and 3D numerical structure models of the Iridomyrmex anceps nest were created.The static and dynamic simulation analysis of an underground ant nest structure was performed by using finite element analysis software (ABAQUS),and the mechanical properties of the ant nest were discussed.The underground ant nest structure effectively resisted the additional stress due to external static and live loads,and the ant nest was not completely destroyed.展开更多
The construction of seaside facilities is a hot topic in the field of ocean engineering.In this paper,a new type of floating breakwater is designed by 3D-CAD geometric modeling.Based on the vibration theory and finite...The construction of seaside facilities is a hot topic in the field of ocean engineering.In this paper,a new type of floating breakwater is designed by 3D-CAD geometric modeling.Based on the vibration theory and finite element tech-nology,the floating breakwater model is optimized,and the modal analysis of the structure with the bracket as main body and blades as functional attachments is carried out.Natural frequencies and mode shapes of the blades are fi rst calculated,and the effects of the natural frequencies in both dry and wet conditions are taken into account.Modal analysis and harmonic response analysis of the bracket with different lengths by removing the blades are also carried out,and the different var-iations of the natural frequencies between several bracket units are compared.The responses of the key position of the bracket under different loads and different bracket lengths are analyzed.The influence of liquid on the natural frequency of the blades and the influence of the length of the bracket on the natural fre-quency of the bracket are discussed in the fluid-solid coupling state.Research in this paper provides a data basis for the safety assessment of the breakwater construction.展开更多
In the present study, finite element dynamic analysis or time history analysis of two-span beams subjected to asynchronous multi-support motions is carried out by using the moving support finite element. The elemental...In the present study, finite element dynamic analysis or time history analysis of two-span beams subjected to asynchronous multi-support motions is carried out by using the moving support finite element. The elemental equation of the element is based on total displacements and is derived under the concept of the quasi-static displacement decomposition. The use of moving support element shows that the element is very simple and convenient to represent continuous beam moving, deforming and vibrating simultaneously due to support motions. The comparison between the numerical results and analytical solutions indicates that the FE result agrees with the analytical solution.展开更多
In structural elements strengthened with Fiber Reinforced Polymer(FRP),debonding failure modes should be taken into consideration.Under specific circumstances,they may provoke a global,premature failure of the structu...In structural elements strengthened with Fiber Reinforced Polymer(FRP),debonding failure modes should be taken into consideration.Under specific circumstances,they may provoke a global,premature failure of the structural element.In other cases,they should be accounted for in the modeling in order to obtain more accurate results.Despite the large amount of research work carried out in this field in the last few decades,debonding failure modes are still not fully understood.This contribution is focused on a numerical procedure designed to model the progressive loss of bond action between FRP and concrete.The two-stage procedure is integrated into incremental,finite element analysis.The proposed algorithm uses experimentally obtained slip-stress relationship.Predefined failure criteria are used to predict the local bond failure.In the reported case study,an experimental set-up widely employed to investigate debonding is modeled.Results obtained by finite element analysis are discussed.展开更多
文摘A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.
文摘In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, the technique of multilevel substructure is used, and the saturated soil analysis is set in the highest level substructure model. Based on these theories a dynamic finite element analysis program DIASS for the analysis of interaction between two phase ocean soil foundation and platform structures has been developed. A numerical example is given here to illustrate the influence of the pore water in soil on the structural response of an ocean platform.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0074936)
文摘Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.
文摘As the elderly population continues to grow, the number of patients with low back pain is gradually increasing. Among them, Lumbar Degenerative Diseases (LDD) is one of the major contributors to low back pain. Biomechanical in vivo studies of the lumbar spine are mainly performed by implants or imaging data to record the real-time changes of form and stress on the intervertebral disc during motion. However, the current developments are slow due to the technological and ethical limitations. In vitro experiments include animal experiments and cadaver experiments, which are difficult to operate or differ greatly from normal human structures, and the results still need to be verified repeatedly to test their accuracy. As for finite element method, it is relatively low cost and can repeat the experimental results. Therefore, we believe that finite element analysis plays an extremely important role in biomechanical research, especially in analyzing the relationship between different surgical models and the degeneration caused by different mechanics.
基金Heilongjiang Province Postdoctoral Science Foundation and China Earthquake Administration’s Tenth Five-year Plan Project
文摘Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combination with the source time function with improved transmitting artificial boundary and with high-frequency vibration contained. The results indicate that the improved artificial boundary is stable in numerical computation and the predicted strong ground motion has a consistent characteristic with the observed motion.
文摘This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc.
基金the National High Technical Reasearch and Development Programme of China (No. 2003AA327140) the National Natural Science Foundation of China (No. 50374081).
文摘Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad.
基金Item Sponsored by Programfor New Century Excellent Talents in University of China(NCET-04-0285)
文摘Three-dimensional finite element model of electromagnetic stirrer was built to predict magnetic field in a bloom continuous casting mold for steel during operation. The effects of current intensity, current frequency, and mold copper plate thickness on the magnetic field distribution in the mold were investigated. The results show that the magnetic induction intensity increases linearly with the increase in current intensity and decreases with the increase in current frequency. Increasing current intensity and frequency is available in increasing the electromagnetic force. The Joule heat decreases gradually from surface to center of bloom, and a maximum Joule heat can be found on corner of bloom. The prediction of magnetic induction intensity is in good agreement with the measured values.
基金Project supported by the National Natural Science Foundation of China(Nos.51375453 and 51775506)the Natural Science Foundation of Zhejiang Province(No.LY18E050022),China
文摘Objective: To investigate the stress distribution to the mandible, with and without impacted third molars(IM3 s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline or from the body of the mandible. Materials and methods: A 3 D mandibular virtual model from a healthy dentate patient was created and the mechanical properties of the mandible were categorized to 9 levels based on the Hounsfield unit measured from computed tomography(CT) images. Von Mises stress distributions to the mandibular angle and condylar areas from static impact forces(Load I-front blow and Load II left blow) were evaluated using finite element analysis(FEA). Six groups with IM3 were included: full horizontal bony, full vertical bony, full 450 mesioangular bony, partial horizontal bony, partial vertical, and partial 450 mesioangular bony impaction, and a baseline group with no third molars. Results: Von Mises stresses in the condyle and angle areas were higher for partially than for fully impacted third molars under both loading conditions, with partial horizontal IM3 showing the highest fracture risk. Stresses were higher on the contralateral than on the ipsilateral side. Under Load II, the angle area had the highest stress for various orientations of IM3 s. The condylar region had the highest stress when IM3 s were absent. Conclusions: High-impact forces are more likely to cause condylar rather than angular fracture when IM3 s are missing. The risk of mandibular fracture is higher for partially than fully impacted third molars, with the angulation of impaction having little effect on facture risk.
基金Supported by National Natural Science Foundation of China(No.90815019)National Key Basic Research Program of China("973" Program,No.2007CB714101)Key Project in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period(No.2006BAB04A13)
文摘Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability.
基金supported by the National Natural Science Foundation of China(No.41174157)
文摘The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment.
基金National Natural Science Foundation of China,Grant/Award Number:51675508Natural Science Foundation of Shaanxi Province,China,Grant/Award Number:2020JQ-728。
文摘In this study,the effects of in vivo(head flexion-extension,lateral bending,and axial rotation)and in vitro(ISO 18192-1)working conditions on the wear of ultrahigh mo-lecular weight polyethylene(UHWMPE)-based cervical disc prosthesis were studied via numerical simulation.A finite-element-based wear prediction framework was built by using a sliding distance and contact area dependent Archard wear law.Moreover,a pre-developed cervical spine multi-body dynamics model was incorporated to obtain the in vivo conditions.Contact mechanic analysis stated that in vitro conditions normally led to a higher contact stress and a longer sliding distance,with oval or crossing-path-typed sliding track.In contrast,in vivo conditions led to a curvilinear-typed sliding track.In general,the predicted in vivo wear rate was one order of magnitude smaller than that of in vitro.According to the yearly occurrence of head movement,the estimated total in vivo wear rate was 0.595 mg/annual.While,the wear rate given by the ISO standard test condition was 3.32 mg/annual.There is a significant impact of loading and kinematic condition on the wear of UHMWPE prosthesis.The work conducted in the present study provided a feasible way for quantitatively assessing the wear of joint prosthesis.
基金supported by the International Science and Technology Cooperation Programme of Hainan Province,China (Grant No.ZDYF2016226)the National Natural Science Foundation of China(Grant No.51879203)
文摘To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simulate the two-phase random media, such that the soil(or rock) volume fraction and the inclination of the soil layer can be examined. The finite element method with random media incorporated as the material properties is used to determine the factor of safety of the rock-soil slope. Monte-Carlo simulations are used to estimate the statistical characteristics of the factor of safety. The failure mode of the rock-soil slope is examined by observing the maximum principal plastic strain at incipient slope failure. It is found that the critical surface of a rock-soil slope is fairly irregular, and it significantly differs from that of a pure soil slope. The factor of safety is sensitive to the soil volume faction, but it is predictable. The average factor of safety could be well predicted by the weighted harmonic average between the strength of soil and rock; the prediction model is practical and simple. Parametric studies on the inclination of the soil layer demonstrate that the most instable scenario occurs when the slope angle is consistent with the inclination of the soil layer.
文摘A number of finite element simulations were performed to analyze the in-plane crushing behaviour of aluminium honeycombs and the results are presented and discussed. The simulations include both X1 and X2 cases. All the analyses are quasi-static, and can be divided into three groups, which are designed to investigate the effects of cell size, foil thickness and yield stress of the foil material, respectively, on the structural response of honeycombs. The result indicates that these factors can significantly affect the plateau stresses of honeycomb cellular structures in both directions, and the plateau stresses in X2 direction are slightly smaller than those in X1 direction. The simulation results were further compared with published theoretical predictions and show higher values. The difference was then analyzed and a new expression for the plateau stress of honeycombs was suggested.
基金This work was supported by the Key R&D Program granted by the Ministry of Science and Technology of China(reference number:2018YFB1107000)the National Natural Science Foundation of China(reference numbers:11732015,11972315)+1 种基金the Project of Academic Leader of Health System(reference number:PWRd2019-05)the Project of Novel Interdisciplinary of Health System(reference number:PWXx2020-08)in Pudong New Area,Shanghai,China.
文摘The methodological quality of subject-specific finite element analysis papers depends on the rigor of the study design and detailed description of key elements,while assessment instruments are often confined to clinical trials or quasi-experiments.This study aims to present an instrument for methodological quality assessment of singlesubject finite element analysis used in computational orthopaedics(MQSSFE).Based upon existing instruments and relevant review papers,a pilot version was developed consisting of 37 items with 6 domains,including study design and presentation of findings,subject recruitment,model reconstruction and configuration,boundary and loading conditions(simulation),model verification and validation,and model assumption and validity.We interviewed four experts in the field to assess the face validity and refined the instrument.The instrument was tested for interrater reliability among two assessors on nine finite element study papers.Also,the criterion validity was evaluated by comparing the similarity of the MQSSFE and the modified Down and Black instrument.The intraclass correlation coefficient was 0.965,while the MQSSFE was significantly moderately correlated with the modified Down and Black instruments(r=0.61).We believed that MQSSFE was adequately appropriate,reliable,and valid for assessing the methodological quality for finite element studies used in computational orthopaedics.The instrument could facilitate quality assessment in the systematic reviews of finite element models and checklists for fidelity.
基金National Science Foundation (51678430)and the Shanghai Pujiang Program (12PJ1409000).Special thanks are extendedto Dr.Xinqi Mao at Tongji University,China.
文摘This paper focuses on the structural characteristics of ant nests,which are complex structures.Natural underground ant nests generally have good air circulation,pressure resistance, waterproof properties,thermal insulation and a favorable temperature and relative humidity. Additionally,ant nests are often surrounded by trees and other natural barriers.In this study, the natural underground ant nests of Iridomyrmex anceps were gathered from different collection sites.Manual cutting and frozen computer numerical control milling were performed on the ant nests in a laboratory.The internal structure of each nest was measured and recorded,and then, the 2D and 3D numerical structure models of the Iridomyrmex anceps nest were created.The static and dynamic simulation analysis of an underground ant nest structure was performed by using finite element analysis software (ABAQUS),and the mechanical properties of the ant nest were discussed.The underground ant nest structure effectively resisted the additional stress due to external static and live loads,and the ant nest was not completely destroyed.
基金This research is funded by the grants from the National Natural Science Foundation of China(Project Nos.11772158 and 11502113)the Fundamental Research Funds for Central Universities(Project No.30917011103).
文摘The construction of seaside facilities is a hot topic in the field of ocean engineering.In this paper,a new type of floating breakwater is designed by 3D-CAD geometric modeling.Based on the vibration theory and finite element tech-nology,the floating breakwater model is optimized,and the modal analysis of the structure with the bracket as main body and blades as functional attachments is carried out.Natural frequencies and mode shapes of the blades are fi rst calculated,and the effects of the natural frequencies in both dry and wet conditions are taken into account.Modal analysis and harmonic response analysis of the bracket with different lengths by removing the blades are also carried out,and the different var-iations of the natural frequencies between several bracket units are compared.The responses of the key position of the bracket under different loads and different bracket lengths are analyzed.The influence of liquid on the natural frequency of the blades and the influence of the length of the bracket on the natural fre-quency of the bracket are discussed in the fluid-solid coupling state.Research in this paper provides a data basis for the safety assessment of the breakwater construction.
文摘In the present study, finite element dynamic analysis or time history analysis of two-span beams subjected to asynchronous multi-support motions is carried out by using the moving support finite element. The elemental equation of the element is based on total displacements and is derived under the concept of the quasi-static displacement decomposition. The use of moving support element shows that the element is very simple and convenient to represent continuous beam moving, deforming and vibrating simultaneously due to support motions. The comparison between the numerical results and analytical solutions indicates that the FE result agrees with the analytical solution.
文摘In structural elements strengthened with Fiber Reinforced Polymer(FRP),debonding failure modes should be taken into consideration.Under specific circumstances,they may provoke a global,premature failure of the structural element.In other cases,they should be accounted for in the modeling in order to obtain more accurate results.Despite the large amount of research work carried out in this field in the last few decades,debonding failure modes are still not fully understood.This contribution is focused on a numerical procedure designed to model the progressive loss of bond action between FRP and concrete.The two-stage procedure is integrated into incremental,finite element analysis.The proposed algorithm uses experimentally obtained slip-stress relationship.Predefined failure criteria are used to predict the local bond failure.In the reported case study,an experimental set-up widely employed to investigate debonding is modeled.Results obtained by finite element analysis are discussed.