To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and a...To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.展开更多
The human visual system is tuned to the motions of biological entities, which provide potentially vital information for survival. The current study examines the interplay between motion speed and motion direction perc...The human visual system is tuned to the motions of biological entities, which provide potentially vital information for survival. The current study examines the interplay between motion speed and motion direction perception. Following a brief presentation of a point-light walker walking straight ahead or slightly leftward or rightward, observers were asked to quickly judge the walking direction (left or right). Participants showed better direction discrimination when the walker walked at a fast pace compared to a natural or slow pace, and this was not simply due to a difference in motion cycles. Moreover, walking direction sensitivity could be enhanced by increasing the feet motion speed alone, so long as the direction of feet movement was consistent with that of the other body parts. These findings demonstrate that our perception of walking direction is influenced by local motion speed, and highlight the role of the feet in biological motion perception.展开更多
In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic eff...In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed,the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward,and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.展开更多
In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recor...In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recorded the motion parameters of the HSB by gyroscope and accelerometer sensors,while using a special data acquisition technique.Additionally,a Chebychev highpass filter was applied as a noise filter to the accelerometer sensor.Then,a novel 3 degrees of freedom(DoF)parallel mechanism(1T2R)with prismatic actuators is proposed and analyses were performed on its inverse kinematics,velocity,and acceleration.Finally,the inverse dynamic analysis is presented by the principle of virtual work,and the validation of the analytical equations was compared by the ADAMS simulation software package.Additionally,according to the recorded experimental data of the HSB,the feasibility of the proposed novel parallel mechanism motion simulator of the HSB,as well as the necessity of using of the washout filters,was explored.展开更多
We calculate the average speed of a projectile in the absence of air resistance, a quantity that is missing from the treatment of the problem in the literature. We then show that this quantity is equal to the time-ave...We calculate the average speed of a projectile in the absence of air resistance, a quantity that is missing from the treatment of the problem in the literature. We then show that this quantity is equal to the time-average instantaneous speed of the projectile, but different from its space-average instantaneous speed. It is then shown that this behavior is shared by general motion of all particles regardless of the dimensionality of motion and the nature of the forces involved. The equality of average speed and time-average instantaneous speed can be useful in situations where the calculation of one is more difficult than the other. Thus, making it more efficient to calculate one by calculating the other.展开更多
The paper first discusses shortcomings of classical adjacent-frame difference. Sec ondly, based on the image energy and high order statistic(HOS) theory, background reconstruction constraints are setup. Under the help...The paper first discusses shortcomings of classical adjacent-frame difference. Sec ondly, based on the image energy and high order statistic(HOS) theory, background reconstruction constraints are setup. Under the help of block-processing technology, background is reconstructed quickly. Finally, background difference is used to detect motion regions instead of adjacent frame difference. The DSP based platform tests indicate the background can be recovered losslessly in about one second, and moving regions are not influenced by moving target speeds. The algorithm has important usage both in theory and applications.展开更多
A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surfa...A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surface, and the Rankine source method is applied to the inner domain while the transient Green function method is used in the outer domain. Two initial boundary value problems are matched on the control surface. The corresponding numerical codes are developed, and the added masses, wave exciting forces and ship motions advancing in head sea for Series 60 ship and S175 containership, are presented and verified. A good agreement has been obtained when the numerical results are compared with the experimental data and other references. It shows that the present method is more efficient because of the panel discretization only in the inner domain during the numerical calculation, and good numerical stability is proved to avoid divergence problem regarding ships with flare.展开更多
A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strate...A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results, the multi-motor synchronized motion control system, via the CAN bus, has been successfully implemented. With the employment of the advanced synchronized motion control strategy, the synchronization performance can be significantly improved.展开更多
In order to get the motion of a cam follower to meet its ideal requirements, we have to design the cam profile by considering its running speed fluctuation. In this paper, taking the beat up motion mechanism of a proj...In order to get the motion of a cam follower to meet its ideal requirements, we have to design the cam profile by considering its running speed fluctuation. In this paper, taking the beat up motion mechanism of a projectile loom as an example, a cam design method is illustrated with its spced fluctuation being considered.展开更多
Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. As a case study, motion capture ...Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. As a case study, motion capture of a free flying Manduca sexta, also known as hawkmoth, is considered by using three synchronized high-speed cameras. A solid finite element (FE) representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. One of the original aspects of this work is the formulation of an objective function and the use of shadow matching and strain-energy regularization. With this objective function, the authors penalize the projection differences between silhouettes of the captured images and the FE representation of the deformed body. The process and procedures undertaken to go from high-speed videography to motion estimation are discussed, and snapshots of representative results are presented. Finally, the captured free-flight motion is also characterized and quantified.展开更多
为分析空心弹高速入水的机理及其特性,基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、Realizable k-ε湍流模型,引入Schnerr-Sauer空化模型和重叠网格技术对空心弹高速入水进行数值模拟研究,获得了通孔孔径和头部形...为分析空心弹高速入水的机理及其特性,基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、Realizable k-ε湍流模型,引入Schnerr-Sauer空化模型和重叠网格技术对空心弹高速入水进行数值模拟研究,获得了通孔孔径和头部形状对空心弹的空化特性、空泡形态和入水运动特性的影响规律。研究显示数值计算的空泡形态和入水速度、位移曲线与实验结果吻合较好,验证了数值模拟方法的可行性。结果表明:当通孔孔径不同时,通孔孔径越大,空化现象越明显,通孔射流越长,但对空泡半径的影响不大;通孔孔径越小,空泡闭合时间越早,与水面碰撞产生的阻力系数峰值越高,空心弹入水稳定后其阻力系数也越大;无量纲直径在0.575~0.600之间时,空心弹的运动最为稳定。当头部锥角不同时,头部锥角越大,空泡直径越大,空化现象出现得越晚,但空化生成的速度更快;随着头部锥角的增大,阻力系数变大,空心弹的速度衰减变快,相同时间运动的距离较短;头部锥角越大,俯仰角的变化越小,空心弹的运动越稳定。展开更多
This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a ...This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a definite angle in specified time, with minimum energy dissipation in the motor windings and minimum frictional losses. Accordingly, an energy optimal (EO) control strategy is proposed in which the motor is first accelerated to track a specific speed profile for a pre-determined optimal time period. Thereafter, both armature and field power supplies are disconnected, and the motor decelerates and comes to a halt at the desired displacement point in the desired total displacement time. The optimal time period for the initial acceleration phase is computed so that the motor stores just enough energy to decelerate to the final position at the specified displacement time. The parameters, such as the moment of inertia and coefficient of friction, which depend on the load and other external conditions, have been obtained using system identification method. Comparison with earlier control techniques is included. The results show that the proposed EO control strategy results in significant reduction of energy losses compared to the existing ones.展开更多
In the cotton factories ginning process bales of raw cotton in cotton tube transporting through the air has written in the article. As a result, cotton with cotton in the air separated by a separator device with air t...In the cotton factories ginning process bales of raw cotton in cotton tube transporting through the air has written in the article. As a result, cotton with cotton in the air separated by a separator device with air traffic, has an important theoretical study. First of all, the air flow that affects the dynamic pressure and laws is based on the model established in this study and the results are obtained.展开更多
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2002AA421150)Specialized Re-search Fund for Doctor Program of Higher Education of China (No. 20030335091).
文摘To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.
基金supported by the National Basic Research Program of China (2011CB711000)the Knowledge Innovation Program of Chinese Academy of Sciences (09CX202020)the National Natural Science Foundation of China (30921064, 31070903 and 90820307)
文摘The human visual system is tuned to the motions of biological entities, which provide potentially vital information for survival. The current study examines the interplay between motion speed and motion direction perception. Following a brief presentation of a point-light walker walking straight ahead or slightly leftward or rightward, observers were asked to quickly judge the walking direction (left or right). Participants showed better direction discrimination when the walker walked at a fast pace compared to a natural or slow pace, and this was not simply due to a difference in motion cycles. Moreover, walking direction sensitivity could be enhanced by increasing the feet motion speed alone, so long as the direction of feet movement was consistent with that of the other body parts. These findings demonstrate that our perception of walking direction is influenced by local motion speed, and highlight the role of the feet in biological motion perception.
基金supported by the National Key Research and Development Program of China(Grant 2016YFB1200602)the National Natural Science Foundation of China (Grants 11672306, 51490673)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB22020101)the National Basic Research Program (973 Program) of China (Grant 2014CB046801)the State Key Laboratory of Hydraulic Engineering Simulation and Safety (Tianjin University)
文摘In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed,the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward,and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.
文摘In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recorded the motion parameters of the HSB by gyroscope and accelerometer sensors,while using a special data acquisition technique.Additionally,a Chebychev highpass filter was applied as a noise filter to the accelerometer sensor.Then,a novel 3 degrees of freedom(DoF)parallel mechanism(1T2R)with prismatic actuators is proposed and analyses were performed on its inverse kinematics,velocity,and acceleration.Finally,the inverse dynamic analysis is presented by the principle of virtual work,and the validation of the analytical equations was compared by the ADAMS simulation software package.Additionally,according to the recorded experimental data of the HSB,the feasibility of the proposed novel parallel mechanism motion simulator of the HSB,as well as the necessity of using of the washout filters,was explored.
文摘We calculate the average speed of a projectile in the absence of air resistance, a quantity that is missing from the treatment of the problem in the literature. We then show that this quantity is equal to the time-average instantaneous speed of the projectile, but different from its space-average instantaneous speed. It is then shown that this behavior is shared by general motion of all particles regardless of the dimensionality of motion and the nature of the forces involved. The equality of average speed and time-average instantaneous speed can be useful in situations where the calculation of one is more difficult than the other. Thus, making it more efficient to calculate one by calculating the other.
文摘The paper first discusses shortcomings of classical adjacent-frame difference. Sec ondly, based on the image energy and high order statistic(HOS) theory, background reconstruction constraints are setup. Under the help of block-processing technology, background is reconstructed quickly. Finally, background difference is used to detect motion regions instead of adjacent frame difference. The DSP based platform tests indicate the background can be recovered losslessly in about one second, and moving regions are not influenced by moving target speeds. The algorithm has important usage both in theory and applications.
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2014CB046203)
文摘A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surface, and the Rankine source method is applied to the inner domain while the transient Green function method is used in the outer domain. Two initial boundary value problems are matched on the control surface. The corresponding numerical codes are developed, and the added masses, wave exciting forces and ship motions advancing in head sea for Series 60 ship and S175 containership, are presented and verified. A good agreement has been obtained when the numerical results are compared with the experimental data and other references. It shows that the present method is more efficient because of the panel discretization only in the inner domain during the numerical calculation, and good numerical stability is proved to avoid divergence problem regarding ships with flare.
基金supported by National Natural Science Foundation of China (No. 69774011)
文摘A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results, the multi-motor synchronized motion control system, via the CAN bus, has been successfully implemented. With the employment of the advanced synchronized motion control strategy, the synchronization performance can be significantly improved.
文摘In order to get the motion of a cam follower to meet its ideal requirements, we have to design the cam profile by considering its running speed fluctuation. In this paper, taking the beat up motion mechanism of a projectile loom as an example, a cam design method is illustrated with its spced fluctuation being considered.
基金Support received for this project from the US National Science Foundation (Grant CMMI-1250187)the US Air Force Office of Scientific Research (Grant FA95501510134) is gratefully acknowledged
文摘Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. As a case study, motion capture of a free flying Manduca sexta, also known as hawkmoth, is considered by using three synchronized high-speed cameras. A solid finite element (FE) representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. One of the original aspects of this work is the formulation of an objective function and the use of shadow matching and strain-energy regularization. With this objective function, the authors penalize the projection differences between silhouettes of the captured images and the FE representation of the deformed body. The process and procedures undertaken to go from high-speed videography to motion estimation are discussed, and snapshots of representative results are presented. Finally, the captured free-flight motion is also characterized and quantified.
文摘为分析空心弹高速入水的机理及其特性,基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、Realizable k-ε湍流模型,引入Schnerr-Sauer空化模型和重叠网格技术对空心弹高速入水进行数值模拟研究,获得了通孔孔径和头部形状对空心弹的空化特性、空泡形态和入水运动特性的影响规律。研究显示数值计算的空泡形态和入水速度、位移曲线与实验结果吻合较好,验证了数值模拟方法的可行性。结果表明:当通孔孔径不同时,通孔孔径越大,空化现象越明显,通孔射流越长,但对空泡半径的影响不大;通孔孔径越小,空泡闭合时间越早,与水面碰撞产生的阻力系数峰值越高,空心弹入水稳定后其阻力系数也越大;无量纲直径在0.575~0.600之间时,空心弹的运动最为稳定。当头部锥角不同时,头部锥角越大,空泡直径越大,空化现象出现得越晚,但空化生成的速度更快;随着头部锥角的增大,阻力系数变大,空心弹的速度衰减变快,相同时间运动的距离较短;头部锥角越大,俯仰角的变化越小,空心弹的运动越稳定。
文摘This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a definite angle in specified time, with minimum energy dissipation in the motor windings and minimum frictional losses. Accordingly, an energy optimal (EO) control strategy is proposed in which the motor is first accelerated to track a specific speed profile for a pre-determined optimal time period. Thereafter, both armature and field power supplies are disconnected, and the motor decelerates and comes to a halt at the desired displacement point in the desired total displacement time. The optimal time period for the initial acceleration phase is computed so that the motor stores just enough energy to decelerate to the final position at the specified displacement time. The parameters, such as the moment of inertia and coefficient of friction, which depend on the load and other external conditions, have been obtained using system identification method. Comparison with earlier control techniques is included. The results show that the proposed EO control strategy results in significant reduction of energy losses compared to the existing ones.
文摘In the cotton factories ginning process bales of raw cotton in cotton tube transporting through the air has written in the article. As a result, cotton with cotton in the air separated by a separator device with air traffic, has an important theoretical study. First of all, the air flow that affects the dynamic pressure and laws is based on the model established in this study and the results are obtained.