Piezoelectric robots play important roles in the field of micromanipulation, but it is difficult for them to generate steady precision motion at any moment. In order to eliminate the changing inertial force and improv...Piezoelectric robots play important roles in the field of micromanipulation, but it is difficult for them to generate steady precision motion at any moment. In order to eliminate the changing inertial force and improve the motion smoothness, this work proposes a piezoelectric robot with continuous walking gait inspired by ants. The idea is verified with theoretical models and numerical simulation, and the performances are evaluated with experiments. The robot is proven to have the ability to generate 3-DOF(dgeree of freedom) continuous smooth motions with constant speeds. The maximum and minimum smooth velocities have a difference of six orders of magnitude, realizing cross-scale velocity control. Besides, the motion resolution reaches several nanometers with the unlimited workspace, so the cross-scale displacement control can be also obtained. Furthermore, with great robustness against varying loads, the stable actuation capability of the robot is more than 22 times of the self-weight. To sum up,the proposed robot generates cross-scale smooth motion in both aspects of displacement and velocity, so it has good prospects in the applications requiring steady precision motion. The design philosophy and research methods in this work can be valuable references for further advances of micromanipulation robots.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. U1913215 and 51975144)。
文摘Piezoelectric robots play important roles in the field of micromanipulation, but it is difficult for them to generate steady precision motion at any moment. In order to eliminate the changing inertial force and improve the motion smoothness, this work proposes a piezoelectric robot with continuous walking gait inspired by ants. The idea is verified with theoretical models and numerical simulation, and the performances are evaluated with experiments. The robot is proven to have the ability to generate 3-DOF(dgeree of freedom) continuous smooth motions with constant speeds. The maximum and minimum smooth velocities have a difference of six orders of magnitude, realizing cross-scale velocity control. Besides, the motion resolution reaches several nanometers with the unlimited workspace, so the cross-scale displacement control can be also obtained. Furthermore, with great robustness against varying loads, the stable actuation capability of the robot is more than 22 times of the self-weight. To sum up,the proposed robot generates cross-scale smooth motion in both aspects of displacement and velocity, so it has good prospects in the applications requiring steady precision motion. The design philosophy and research methods in this work can be valuable references for further advances of micromanipulation robots.