Linear switched reluctance motor(LSRM)and its applications in different industries have been an interesting research topic for the past few years.LSRMs have proved to be a suitable alternative in a variety of applicat...Linear switched reluctance motor(LSRM)and its applications in different industries have been an interesting research topic for the past few years.LSRMs have proved to be a suitable alternative in a variety of applications requiring linear motion.However,its use is not that popular which instigated an active interest in the evolution of newer LSRM configurations.Enhancement in its propulsion force along with the reduction in force ripples,weight,acoustic noise,and vibration have been the main objectives in recently proposed LSRM designs.In this paper,recently proposed LSRM designs are reviewed and analyzed.The paper presents a one-stop introduction and a complete update to the designs,both in terms of qualitative and quantitative parameters.In addition,it takes into account the challenges in the implementation of these designs.Based on a detailed comparison of these designs as presented in this paper,an appropriate design can be chosen for a given application.展开更多
The genetic algorithm (GA) to the design of electromagnetic micro motor to optimize parameter design. Besides the different oversize from macro motor, the novel structure of micro motor which the rotor is set betwee...The genetic algorithm (GA) to the design of electromagnetic micro motor to optimize parameter design. Besides the different oversize from macro motor, the novel structure of micro motor which the rotor is set between the two stators make its design different, too. There are constraint satisfaction problems CSP) in the design. It is shown that the use GA offers a high rate of global convergence and the ability to get the optimal design of electromagnetic micro motors.展开更多
This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finit...This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finite element calcula-tion. Then, the configuration yielding the best performances is integrated and modelled with the whole traction chain under MATLAB/SIMULINK environment in order to demonstrate the motor operation on a large speed band.展开更多
The application of a closed-loop specification oriented feedback control design method, which addresses the design of controllers to satisfy multiple simultaneous conflicting closed-loop performance specifications is ...The application of a closed-loop specification oriented feedback control design method, which addresses the design of controllers to satisfy multiple simultaneous conflicting closed-loop performance specifications is presented. The proposed approach is well suited to the design of controllers which must meet a set of conflicting performance specifications. Gain tuning is central to the design process, however, the tuning process is greatly simplified over that presented by the problem of tuning a PID controller for example. The proposed control method is applied to an AC induction motor, with an inner-loop flux vector controller applied to design a position control system. Experimental results verify the effectiveness of this method.展开更多
A Particle Swarm Optimization (PSO) based design of three-phase induction motors are proposed. The induction motor design is treated as a non-linear and multivariable constrained optimization problem. The annual mater...A Particle Swarm Optimization (PSO) based design of three-phase induction motors are proposed. The induction motor design is treated as a non-linear and multivariable constrained optimization problem. The annual material cost and the total annual cost of the motor are chosen as two different objective functions. The PSO is used to find a set of optimal design variables of the motor which are then used to predict performance indices and the objective functions. The proposed method is demonstrated for two sample motors, and it is compared with the genetic algorithm (GA) and the conventional design methods. The results show that the PSO-based method effectively solved the induction motor design problems and outperforms the other methods in both the solution quality and computation efficiency.展开更多
This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First...This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient.展开更多
A novel high power-density PMSM (permanent magnetic synchronous motor) with independent magnetic flux path for each phase is proposed in the paper. The complex ma thematic model of PMSM is simplified by decoupling of ...A novel high power-density PMSM (permanent magnetic synchronous motor) with independent magnetic flux path for each phase is proposed in the paper. The complex ma thematic model of PMSM is simplified by decoupling of magnetic flux paths between motor phases. In addition, harmonic components are lowered through optimum design of EMF (electric motive force) wave. Thus the ripple torque caused by EMF wave distortion is suppressed. Key words PMSM (permanent magnetic synchronous motor) - phase decoupling - optimum design of back EMF(electric motive force)展开更多
The selection of electro-acupuncture parameters remains poorly unified between clinical studies. The present study observed the effects of electro-acupuncturing Renzhong (DU 26) with different stimulation parameters...The selection of electro-acupuncture parameters remains poorly unified between clinical studies. The present study observed the effects of electro-acupuncturing Renzhong (DU 26) with different stimulation parameters on motor function recovery following middle artery occlusion injury in rats. Results showed an optimal stimulation parameter for Renzhong electro-acupuncture that was low frequency and mild current (2 Hz, 1 mA) significantly improved cortical excitability and conductive function, and promoted recovery in a rat model of motor function in middle artery occlusion. Frequency had a greater impact than current or interaction, and played a critical role in electro-acupuncture therapy.展开更多
Molecular motors are nature's nano-devices and the essential agents of movement that are an integral part of many living organisms. The supramolecular motor, called Nuclear Pore Complex (NPC), controls the transpor...Molecular motors are nature's nano-devices and the essential agents of movement that are an integral part of many living organisms. The supramolecular motor, called Nuclear Pore Complex (NPC), controls the transport of all cellular material be- tween the cytoplasm and the nucleus that occurs naturally in biological cells of many organisms. In order to understand the design characteristics of the NPC, we developed a microdevice for drug/fluidic transport mimicking the coarse-grained repre- sentation of the NPC geometry through computational fluid dynamic analysis and optimization. Specifically, the role of the central plug in active fluidic/particle transport and passive transport (without central plug) was investigated. Results of flow rate, pressure and velocity profiles obtained from the models indicate that the central plug plays a major role in transport through this biomolecular machine. The results ofthis investigation show that fluidic transport and flow passages are important factors in designing NPC based nano- and micro-devices for drug delivery.展开更多
In order to lighten the burden of health care workers and help people with Lower limb insufficiency to do rehabilitation training, this paper designs a model named exoskeletons rehabilitation robot to simulate the hum...In order to lighten the burden of health care workers and help people with Lower limb insufficiency to do rehabilitation training, this paper designs a model named exoskeletons rehabilitation robot to simulate the human gait, including exoskeletons and scooter structure, and designs the driver module. Finally, this paper uses Workbench software to do the stress and strain analysis, which validates the reliability of the whole design.展开更多
In order to measure the instantaneous thrust of a certain attitude-control solid rocket motor, based on the analysis of the measurement principles, the difference between the instantaneous thrust and steady thrust mea...In order to measure the instantaneous thrust of a certain attitude-control solid rocket motor, based on the analysis of the measurement principles, the difference between the instantaneous thrust and steady thrust measurements is pointed out. According to the measurement characteristics, a dynamic digital filter compensation method is presented. Combined the identification-modeling, dynamic compensation and simulation, the system's dynamic mathematic model is established. And then, a compensation digital filter is also designed. Thus, the dynamic response of the system is improved and the instantaneous thrust measurement can be implemented. The measurement results for the rocket motor show that the digital filter compensation is effective in the instantaneous thrust measurement.展开更多
Although some patients have successful peripheral nerve regeneration,a poor recovery of hand function often occurs after peripheral nerve injury.It is believed that the capability of brain plasticity is crucial for th...Although some patients have successful peripheral nerve regeneration,a poor recovery of hand function often occurs after peripheral nerve injury.It is believed that the capability of brain plasticity is crucial for the recovery of hand function.The supplementary motor area may play a key role in brain remodeling after peripheral nerve injury.In this study,we explored the activation mode of the supplementary motor area during a motor imagery task.We investigated the plasticity of the central nervous system after brachial plexus injury,using the motor imagery task.Results from functional magnetic resonance imaging showed that after brachial plexus injury,the motor imagery task for the affected limbs of the patients triggered no obvious activation of bilateral supplementary motor areas.This result indicates that it is difficult to excite the supplementary motor areas of brachial plexus injury patients during a motor imagery task,thereby impacting brain remodeling.Deactivation of the supplementary motor area is likely to be a serious problem for brachial plexus injury patients in terms of preparing,initiating and executing certain movements,which may be partly responsible for the unsatisfactory clinical recovery of hand function.展开更多
基金Authors thank MANIT Bhopal and Ministry of Education,India for extending financial support for the research work.
文摘Linear switched reluctance motor(LSRM)and its applications in different industries have been an interesting research topic for the past few years.LSRMs have proved to be a suitable alternative in a variety of applications requiring linear motion.However,its use is not that popular which instigated an active interest in the evolution of newer LSRM configurations.Enhancement in its propulsion force along with the reduction in force ripples,weight,acoustic noise,and vibration have been the main objectives in recently proposed LSRM designs.In this paper,recently proposed LSRM designs are reviewed and analyzed.The paper presents a one-stop introduction and a complete update to the designs,both in terms of qualitative and quantitative parameters.In addition,it takes into account the challenges in the implementation of these designs.Based on a detailed comparison of these designs as presented in this paper,an appropriate design can be chosen for a given application.
文摘The genetic algorithm (GA) to the design of electromagnetic micro motor to optimize parameter design. Besides the different oversize from macro motor, the novel structure of micro motor which the rotor is set between the two stators make its design different, too. There are constraint satisfaction problems CSP) in the design. It is shown that the use GA offers a high rate of global convergence and the ability to get the optimal design of electromagnetic micro motors.
文摘This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finite element calcula-tion. Then, the configuration yielding the best performances is integrated and modelled with the whole traction chain under MATLAB/SIMULINK environment in order to demonstrate the motor operation on a large speed band.
文摘The application of a closed-loop specification oriented feedback control design method, which addresses the design of controllers to satisfy multiple simultaneous conflicting closed-loop performance specifications is presented. The proposed approach is well suited to the design of controllers which must meet a set of conflicting performance specifications. Gain tuning is central to the design process, however, the tuning process is greatly simplified over that presented by the problem of tuning a PID controller for example. The proposed control method is applied to an AC induction motor, with an inner-loop flux vector controller applied to design a position control system. Experimental results verify the effectiveness of this method.
文摘A Particle Swarm Optimization (PSO) based design of three-phase induction motors are proposed. The induction motor design is treated as a non-linear and multivariable constrained optimization problem. The annual material cost and the total annual cost of the motor are chosen as two different objective functions. The PSO is used to find a set of optimal design variables of the motor which are then used to predict performance indices and the objective functions. The proposed method is demonstrated for two sample motors, and it is compared with the genetic algorithm (GA) and the conventional design methods. The results show that the PSO-based method effectively solved the induction motor design problems and outperforms the other methods in both the solution quality and computation efficiency.
文摘This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient.
文摘A novel high power-density PMSM (permanent magnetic synchronous motor) with independent magnetic flux path for each phase is proposed in the paper. The complex ma thematic model of PMSM is simplified by decoupling of magnetic flux paths between motor phases. In addition, harmonic components are lowered through optimum design of EMF (electric motive force) wave. Thus the ripple torque caused by EMF wave distortion is suppressed. Key words PMSM (permanent magnetic synchronous motor) - phase decoupling - optimum design of back EMF(electric motive force)
基金the National Natural Science Foundation of China,No.30873304
文摘The selection of electro-acupuncture parameters remains poorly unified between clinical studies. The present study observed the effects of electro-acupuncturing Renzhong (DU 26) with different stimulation parameters on motor function recovery following middle artery occlusion injury in rats. Results showed an optimal stimulation parameter for Renzhong electro-acupuncture that was low frequency and mild current (2 Hz, 1 mA) significantly improved cortical excitability and conductive function, and promoted recovery in a rat model of motor function in middle artery occlusion. Frequency had a greater impact than current or interaction, and played a critical role in electro-acupuncture therapy.
基金The authors thank the US National Science Foundation for sponsoring the research reported in this study through a grant ECCS- 1058067.
文摘Molecular motors are nature's nano-devices and the essential agents of movement that are an integral part of many living organisms. The supramolecular motor, called Nuclear Pore Complex (NPC), controls the transport of all cellular material be- tween the cytoplasm and the nucleus that occurs naturally in biological cells of many organisms. In order to understand the design characteristics of the NPC, we developed a microdevice for drug/fluidic transport mimicking the coarse-grained repre- sentation of the NPC geometry through computational fluid dynamic analysis and optimization. Specifically, the role of the central plug in active fluidic/particle transport and passive transport (without central plug) was investigated. Results of flow rate, pressure and velocity profiles obtained from the models indicate that the central plug plays a major role in transport through this biomolecular machine. The results ofthis investigation show that fluidic transport and flow passages are important factors in designing NPC based nano- and micro-devices for drug delivery.
基金Supported by Science and Technology Department of Anhui Province Qiushi Plan(JZ2015QSJH0245)National College Students’Entrepreneurship Practice Project(201410359070)
文摘In order to lighten the burden of health care workers and help people with Lower limb insufficiency to do rehabilitation training, this paper designs a model named exoskeletons rehabilitation robot to simulate the human gait, including exoskeletons and scooter structure, and designs the driver module. Finally, this paper uses Workbench software to do the stress and strain analysis, which validates the reliability of the whole design.
文摘In order to measure the instantaneous thrust of a certain attitude-control solid rocket motor, based on the analysis of the measurement principles, the difference between the instantaneous thrust and steady thrust measurements is pointed out. According to the measurement characteristics, a dynamic digital filter compensation method is presented. Combined the identification-modeling, dynamic compensation and simulation, the system's dynamic mathematic model is established. And then, a compensation digital filter is also designed. Thus, the dynamic response of the system is improved and the instantaneous thrust measurement can be implemented. The measurement results for the rocket motor show that the digital filter compensation is effective in the instantaneous thrust measurement.
基金supported by the Youth Researcher Foundation of Shanghai Health Development Planning Commission,No.20124319
文摘Although some patients have successful peripheral nerve regeneration,a poor recovery of hand function often occurs after peripheral nerve injury.It is believed that the capability of brain plasticity is crucial for the recovery of hand function.The supplementary motor area may play a key role in brain remodeling after peripheral nerve injury.In this study,we explored the activation mode of the supplementary motor area during a motor imagery task.We investigated the plasticity of the central nervous system after brachial plexus injury,using the motor imagery task.Results from functional magnetic resonance imaging showed that after brachial plexus injury,the motor imagery task for the affected limbs of the patients triggered no obvious activation of bilateral supplementary motor areas.This result indicates that it is difficult to excite the supplementary motor areas of brachial plexus injury patients during a motor imagery task,thereby impacting brain remodeling.Deactivation of the supplementary motor area is likely to be a serious problem for brachial plexus injury patients in terms of preparing,initiating and executing certain movements,which may be partly responsible for the unsatisfactory clinical recovery of hand function.