The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to ana...The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness, and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.展开更多
The clearance of the hemisphere dynamic pressure motor is small and difficult to measure, the measurement method of micro clearance is studied. The shortcomings of the original measurement method are analyzed, and a c...The clearance of the hemisphere dynamic pressure motor is small and difficult to measure, the measurement method of micro clearance is studied. The shortcomings of the original measurement method are analyzed, and a clearance measuring device for the hemisphere dynamic pressure motor is designed, which improves the measurement efficiency and stability.展开更多
Purpose: The primary aim of this study was to develop an assessment of the fundamental, combined, and complex movement skills required to support childhood physical literacy. The secondary aim was to establish the fea...Purpose: The primary aim of this study was to develop an assessment of the fundamental, combined, and complex movement skills required to support childhood physical literacy. The secondary aim was to establish the feasibility, objectivity, and reliability evidence for the assessment.Methods: An expert advisory group recommended a course format for the assessment that would require children to complete a series of dynamic movement skills. Criterion-referenced skill performance and completion time were the recommended forms of evaluation. Children, 8–12 years of age, self-reported their age and gender and then completed the study assessments while attending local schools or day camps. Face validity was previously established through a Delphi expert(n = 19, 21% female) review process. Convergent validity was evaluated by age and gender associations with assessment performance. Inter-and intra-rater(n = 53, 34% female) objectivity and test–retest(n = 60, 47% female) reliability were assessed through repeated test administration.Results: Median total score was 21 of 28 points(range 5–28). Median completion time was 17 s. Total scores were feasible for all 995 children who self-reported age and gender. Total score did not differ between inside and outside environments(95% confidence interval(CI) of difference:-0.7 to 0.6;p = 0.91) or with/without footwear(95%CI of difference:-2.5 to 1.9; p = 0.77). Older age(p < 0.001, η2= 0.15) and male gender(p < 0.001, η2= 0.02)were associated with a higher total score. Inter-rater objectivity evidence was excellent(intraclass correlation coefficient(ICC) = 0.99) for completion time and substantial for skill score(ICC = 0.69) for 104 attempts by 53 children(34% female). Intra-rater objectivity was moderate(ICC = 0.52) for skill score and excellent for completion time(ICC = 0.99). Reliability was excellent for completion time over a short(2–4 days; ICC = 0.84) or long(8–14days; ICC = 0.82) interval. Skill score reliability was moderate(ICC = 0.46) over a short interval, and substantial(ICC = 0.74) over a long interval.Conclusion: The Canadian Agility and Movement Skill Assessment is a feasible measure of selected fundamental, complex and combined movement skills, which are an important building block for childhood physical literacy. Moderate-to-excellent objectivity was demonstrated for children 8–12 years of age. Test–retest reliability has been established over an interval of at least 1 week. The time and skill scores can be accurately estimated by 1 trained examiner.展开更多
In this paper,the screw transformations are discussed in detail and theirmatrices are given.Based on Lagrangian equations,a new method for modelling the dy-namic behavior of robots is presented.The derivation is simpl...In this paper,the screw transformations are discussed in detail and theirmatrices are given.Based on Lagrangian equations,a new method for modelling the dy-namic behavior of robots is presented.The derivation is simple,and the configuration ofthe model is concise.All the coefficients are calculated in simple recursive way,which canbe easily programmed in computation.The method presented can also be used in the dy-namic and the kinematic study of spatial mechanisms.展开更多
The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–sol...The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas.Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB(hydroxyl-terminated polybutadiene) hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.展开更多
文摘The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness, and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.
文摘The clearance of the hemisphere dynamic pressure motor is small and difficult to measure, the measurement method of micro clearance is studied. The shortcomings of the original measurement method are analyzed, and a clearance measuring device for the hemisphere dynamic pressure motor is designed, which improves the measurement efficiency and stability.
基金funded by a grant from the Canadian Institutes of Health Research awarded to Dr. Meghann Lloyd and Dr. Mark Tremblay (IHD 94356)
文摘Purpose: The primary aim of this study was to develop an assessment of the fundamental, combined, and complex movement skills required to support childhood physical literacy. The secondary aim was to establish the feasibility, objectivity, and reliability evidence for the assessment.Methods: An expert advisory group recommended a course format for the assessment that would require children to complete a series of dynamic movement skills. Criterion-referenced skill performance and completion time were the recommended forms of evaluation. Children, 8–12 years of age, self-reported their age and gender and then completed the study assessments while attending local schools or day camps. Face validity was previously established through a Delphi expert(n = 19, 21% female) review process. Convergent validity was evaluated by age and gender associations with assessment performance. Inter-and intra-rater(n = 53, 34% female) objectivity and test–retest(n = 60, 47% female) reliability were assessed through repeated test administration.Results: Median total score was 21 of 28 points(range 5–28). Median completion time was 17 s. Total scores were feasible for all 995 children who self-reported age and gender. Total score did not differ between inside and outside environments(95% confidence interval(CI) of difference:-0.7 to 0.6;p = 0.91) or with/without footwear(95%CI of difference:-2.5 to 1.9; p = 0.77). Older age(p < 0.001, η2= 0.15) and male gender(p < 0.001, η2= 0.02)were associated with a higher total score. Inter-rater objectivity evidence was excellent(intraclass correlation coefficient(ICC) = 0.99) for completion time and substantial for skill score(ICC = 0.69) for 104 attempts by 53 children(34% female). Intra-rater objectivity was moderate(ICC = 0.52) for skill score and excellent for completion time(ICC = 0.99). Reliability was excellent for completion time over a short(2–4 days; ICC = 0.84) or long(8–14days; ICC = 0.82) interval. Skill score reliability was moderate(ICC = 0.46) over a short interval, and substantial(ICC = 0.74) over a long interval.Conclusion: The Canadian Agility and Movement Skill Assessment is a feasible measure of selected fundamental, complex and combined movement skills, which are an important building block for childhood physical literacy. Moderate-to-excellent objectivity was demonstrated for children 8–12 years of age. Test–retest reliability has been established over an interval of at least 1 week. The time and skill scores can be accurately estimated by 1 trained examiner.
文摘In this paper,the screw transformations are discussed in detail and theirmatrices are given.Based on Lagrangian equations,a new method for modelling the dy-namic behavior of robots is presented.The derivation is simple,and the configuration ofthe model is concise.All the coefficients are calculated in simple recursive way,which canbe easily programmed in computation.The method presented can also be used in the dy-namic and the kinematic study of spatial mechanisms.
基金co-supported by the Innovation Foundation of Beihang University for Ph.D. Graduatesthe National Natural Science Foundation of China (No. 51206007)
文摘The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas.Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB(hydroxyl-terminated polybutadiene) hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.