期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Identification of injury type using somatosensory and motor evoked potentials in a rat spinal cord injury model
1
作者 Rong Li Han-Lei Li +2 位作者 Hong-Yan Cui Yong-Can Huang Yong Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期422-427,共6页
The spinal cord is at risk of injury during spinal surgery.If intraoperative spinal co rd injury is identified early,irreve rsible impairment or loss of neurological function can be prevented.Different types of spinal... The spinal cord is at risk of injury during spinal surgery.If intraoperative spinal co rd injury is identified early,irreve rsible impairment or loss of neurological function can be prevented.Different types of spinal cord injury result in damage to diffe rent spinal cord regions,which may cause diffe rent somatosensory and motor evoked potential signal res ponses.In this study,we examined electrophysiological and histopathological changes between contusion,distra ction,and dislocation spinal cord injuries in a rat model.We found that contusion led to the most severe dorsal white matter injury and caused considerable attenuation of both somatosensory and motor evoked potentials.Dislocation resulted in loss of myelinated axons in the lateral region of the injured spinal cord along the rostrocaudal axis.The amplitude of attenuation in motor evoked potential responses caused by dislocation was greater than that caused by contusion.After distraction injury,extracellular spaces were slightly but not significantly enlarged;somatosensory evoked potential res ponses slightly decreased and motor evoked potential responses were lost.Correlation analysis showed that histological and electrophysiological findings we re significantly correlated and related to injury type.Intraope rative monitoring of both somatosensory and motor evoked potentials has the potential to identify iatrogenic spinal cord injury type during surgery. 展开更多
关键词 contusion injury dislocation injury distraction injury electropnysiology heterogeneity HISTOPATHOLOGY injury mechanism motor evoked potential somatosensory evoked potential spinal cord injury
下载PDF
Correlation study between the changes of motor evoked potential and the improvement of spinal canal volume in minimally invasive transforaminal lumbar interbody fusion
2
作者 CHEN Huan-xiong HE Xian-bo +6 位作者 LI Guo-jun TANG Song-jie ZHONG Zhen-hao HUANG Tao LIN You-cai LIN Su-yu MENG Zhi-bin 《Journal of Hainan Medical University》 CAS 2023年第8期26-31,共6页
Objective:To analyze the correlation between the amplitude changes of motor evoked potential(MEP),the 3D volume changes of spinal canal measuring by postoperative CT and the improvement rate of clinical symptoms after... Objective:To analyze the correlation between the amplitude changes of motor evoked potential(MEP),the 3D volume changes of spinal canal measuring by postoperative CT and the improvement rate of clinical symptoms after the spinal canal decompression in minimally invasive transforaminal lumbar interbody fusion(MIS-TLIF),and to explore the predictive value of the changes of both MEP amplitude and spinal canal volume in the assessment of long-term clinical prognosis in MIS-TLIF.Methods:A retrospective study of 68 patients with L4/5 spinal stenosis treated with MIS-TLIF was performed.The changes of both intraoperative MEP amplitude and 3D spinal canal volume during the spinal canal decompression,as well as the visual analogue scale(VAS)and Oswestry dysfunction index(ODI)scores in the long-term follow-up were all recorded.Results:The values of intraoperative MEP amplitude was 159.04%higher in 68 patients with MIS-TLIF after spinal canal decompression(P<0.01).The 3 postoperative 3D spinal canal volume(4.89±1.27)cm increased by 31.22%in comparison 3 with preoperative date(3.78±1.08)cm(P<0.01).The VAS and ODI scores were improved to 78.55%and 80.60%,respectively at the last follow-up(P<0.01).The improvement rate of MEP amplitude on the decompression side was positively correlated with the improvement rate of postoperative spinal canal volume(r=0.272,P=0.025).The improvement rate of postoperative spinal canal volume was positively correlated with the improvement rate of VAS and ODI at the last follow-up(r=0.656,r=0.490,P<0.01).Moreover,the improvement rate of MEP amplitude on the decompression side was also positively correlated with the improvement rate of VAS and ODI at the last follow-up(r=0.322 and 0.235,respectively,P<0.05).Conclusion:The increase of MEP amplitude after spinal canal decompression in patients with lumbar spinal stenosis treated by MIS-TLIF was closely correlated with both of the increase of spinal canal volume and the improvement of clinical symptoms.Therefore,MEP amplitude monitoring was not only the one of the important monitoring methods for predicting the prognosis of MIS-TLIF but also the reliably predictive value in the long-term clinical prognosis in MIS-TLIF. 展开更多
关键词 Lumbar spinal stenosis Minimally invasive transforaminal lumbar interbody fusion motor evoked potentials Spinal canal volume
下载PDF
Cortical evoked potential changes in a rat model of acute ischemic stroke Detection of somatosensory evoked potential and motor evoked potential 被引量:1
3
作者 Yang Shao 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第7期550-554,共5页
BACKGROUND: Studies have shown that latency changes of some elements in a somatosensory evoked potential (SEP) and motor evoked potential (MEP) can reflect electrical activity of cerebral cortical neurons and conducti... BACKGROUND: Studies have shown that latency changes of some elements in a somatosensory evoked potential (SEP) and motor evoked potential (MEP) can reflect electrical activity of cerebral cortical neurons and conduction of white matter nerve fibers. However, there is a paucity of information regarding the dynamic observation of SEP and MEP following cerebral ischemic injury. OBJECTIVE: To explore SEP and MEP changes following acute ischemic stroke, and investigate the role of evoked potentials in monitoring brain function in stroke. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Chongqing Key Laboratory of Neurology, Affiliated Hospital of Chongqing Medical University from September 2007 to August 2008. MATERIALS: Hydrogen blood flow detector was purchased from Soochow University Medical Instrument Co., China, and Power lab system was purchased from AD Instruments, Inc., USA. METHODS: A total of 36 healthy, adult, male, Sprague Dawley rats were randomly assigned to four groups (n = 9), including three ischemia groups (12, 24 and 72 hours of ischemia) and a sham-surgery group. The rat model of acute ischemic stroke was established by middle cerebral artery occlusion (MCAO) in the left hemisphere. MAIN OUTCOME MEASURES: SEP and MEP of the left limbs were detected, and cerebral blood flow was measured by the hydrogen cleaning method. RESULTS: The latency of positive wave 1 (P1), negative wave 1 (N1) and positive wave 2 (P2) waves in SEP, and latency of negative wave 1, 2 (N1, N2) waves in MEP were significantly prolonged with increasing ischemic duration following MCAO (P < 0.01), but cerebral blood flow was significantly decreased (P < 0.05, or P < 0.01). CONLUSION: Ischemic stroke prolongs the latency of SEP waves (P1, N1, P2) and MEP waves (N1, N2), and cerebral cortical evoked potential may correlate with cerebral blood flow changes. This indicates that SEP and MEP can be used to evaluate brain function following acute ischemic stroke. 展开更多
关键词 somatosensory evoked potential motor evoked potential LATENCY cerebral blood flow brain function acute ischemic stroke neural regeneration
下载PDF
Involuntary muscle spasm expressed as motor evoked potential after olfactory mucosa autograft in patients with chronic spinal cord injury and complete paraplegia
4
作者 Koichi Iwatsuki Toshiki Yoshimine +6 位作者 Yoshiyuki Sankai Fumihiro Tajima Masao Umegaki Yu-Ichiro Ohnishi Masahiro Ishihara Koshi Ninomiya Takashi Moriwaki 《Journal of Biomedical Science and Engineering》 2013年第9期908-916,共9页
Object: The efficacy of olfactory mucosa autograft (OMA) for chronic spinal cord injury has been reported. New activity in response to voluntary effort has been documented by electromyography (EMG), but the emergence ... Object: The efficacy of olfactory mucosa autograft (OMA) for chronic spinal cord injury has been reported. New activity in response to voluntary effort has been documented by electromyography (EMG), but the emergence of motor evoked potential (MEP) reflecting electrophysiological conductivity in the central nervous system, including the corticospinal pathway, after OMA, and the best indications for OMA, have not been clarified. Here, we report the emergence of MEPs after OMA and offer recom-mendations for appropriate indications based on the presence of involuntary muscle spasm (IMS). We used analysis of MEP to examine the efficacy of OMA for patients with complete paraplegia due to chronic spinal cord injury. To clarify the indications for OMA, we investigated the association of IMS and efficacy of OMA. Methods: Four patients, 3 men and 1 woman, were enrolled. The mean age of the cases was 30.3 ± 9.5 years (range, 19 to 40 years). All 4 cases were American Spinal Injury Association (ASISA) grade A. The mean duration from injury to OMA was 95.8 ± 68.2 months (range, 17 to 300 months). Samples of olfactory mucosa were removed, cut into smaller pieces, and grafted into the sites of spinal cord lesions after laminectomy. Postoperative subcutaneous fluid collection, postoperative meningitis, postoperative nosebleed, postoperative infection in the nasal cavity, impaired olfaction, neoplastic tissue overgrowth at the autograft site, new sensory disturbance, and involuntary muscle spasm were investigated as safety issues. Improvements in ASIA grade, variations in ASIA scores, EMG, SSEP, and improved urological function were evaluated as efficacy indicators. Results: There were no serious adverse events in this series. In 2 of the 4 cases, an improvement in motor function below the level of injury was recognized. In one, the motor score was 50 until 16 weeks after surgery, and it increased to 52 from 20 weeks after surgery. In the other, the motor score was 50 until 20 weeks after surgery, and it increased to 52 at 24 weeks after surgery with a further increase to 54 at 48 weeks after surgery. The emergence of MEP was recognized in the latter case at 96 weeks after surgery. The other 2 cases had no improvement in ASIA motor score. Both of these cases who showed improvements in the ASIA motor scores exhibited relative IMS compared with those who had no ASIA motor score recovery. Conclusions: We recognized the emergence of MEPs in a case with complete paraplegia due to chronic spinal cord injury after OMA. IMS might be a candidate of indication of OMA. 展开更多
关键词 Olfactory Mucosa Autograft Spinal Cord Injury TRANSPLANTATION Voluntary Movement motor evoked Potential
下载PDF
Effects of cortical intermittent theta burst stimulation combined with precise root stimulation on motor function after spinal cord injury: a case series study 被引量:3
5
作者 Ye-Ran Mao Zhong-Xia Jin +10 位作者 Ya Zheng Jian Fan Li-Juan Zhao Wei Xu Xiao Hu Chun-Ya Gu Wei-Wei Lu Guang-Yue Zhu Yu-Hui Chen Li-Ming Cheng Dong-Sheng Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第8期1821-1826,共6页
Activation and reconstruction of the spinal cord circuitry is important for improving motor function following spinal cord injury.We conducted a case series study to investigate motor function improvement in 14 patien... Activation and reconstruction of the spinal cord circuitry is important for improving motor function following spinal cord injury.We conducted a case series study to investigate motor function improvement in 14 patients with chronic spinal cord injury treated with 4 weeks of unilateral(right only)cortical intermittent theta burst stimulation combined with bilateral magnetic stimulation of L3-L4 nerve roots,five times a week.Bilateral resting motor evoked potential amplitude was increased,central motor conduction time on the side receiving cortical stimulation was significantly decreased,and lower extremity motor score,Berg balance score,spinal cord independence measure-III score,and 10 m-walking speed were all increased after treatment.Right resting motor evoked potential amplitude was positively correlated with lower extremity motor score after 4 weeks of treatment.These findings suggest that cortical intermittent theta burst stimulation combined with precise root stimulation can improve nerve conduction of the corticospinal tract and lower limb motor function recovery in patients with chronic spinal cord injury. 展开更多
关键词 central motor conduction time intermittent theta burst lower extremity motor score motor evoked potential stimulation NEUROMODULATION neuronal plasticity spinal cord injury transcranial magnetic stimulation
下载PDF
Corticospinal excitability during motor imagery is diminished by continuous repetition-induced fatigue
6
作者 Akira Nakashima Takefumi Moriuchi +7 位作者 Daiki Matsuda Takashi Hasegawa Jirou Nakamura Kimika Anan Katsuya Satoh Tomotaka Suzuki Toshio Higashi Kenichi Sugawara 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第6期1031-1036,共6页
Application of continuous repetition of motor imagery can improve the performance of exercise tasks.However,there is a lack of more detailed neurophysiological evidence to support the formulation of clear standards fo... Application of continuous repetition of motor imagery can improve the performance of exercise tasks.However,there is a lack of more detailed neurophysiological evidence to support the formulation of clear standards for interventions using motor imagery.Moreover,identification of motor imagery intervention time is necessary because it exhibits possible central fatigue.Therefore,the purpose of this study was to elucidate the development of fatigue during continuous repetition of motor imagery through objective and subjective evaluation.The study involved two experiments.In experiment 1,14 healthy young volunteers were required to imagine grasping and lifting a 1.5-L plastic bottle using the whole hand.Each participant performed the motor imagery task 100 times under each condition with 48 hours interval between two conditions:500 mL or 1500 mL of water in the bottle during the demonstration phase.Mental fatigue and a decrease in pinch power appeared under the 1500-mL condition.There were changes in concentration ability or corticospinal excitability,as assessed by motor evoked potentials,between each set with continuous repetition of motor imagery also under the 1500-mL condition.Therefore,in experiment 2,12 healthy volunteers were required to perform the motor imagery task 200 times under the 1500-mL condition.Both concentration ability and corticospinal excitability decreased.This is the first study to show that continuous repetition of motor imagery can decrease corticospinal excitability in addition to producing mental fatigue.This study was approved by the Institutional Ethics Committee at the Nagasaki University Graduate School of Biomedical and Health Sciences(approval No.18121302)on January 30,2019. 展开更多
关键词 central nervous system concentration continuous repetition of motor imagery corticospinal excitability mental fatigue motor evoked potential motor imagery muscle fatigue NEUROPHYSIOLOGY transcranial magnetic stimulation
下载PDF
Combining Motor Imagery and Action Observation with Vibratory Stimulation Increases Corticomotor Excitability in Healthy Young Adults
7
作者 Nodoka Kimura Tomoya Furuta +1 位作者 Gen Miura Eiichi Naito 《Journal of Behavioral and Brain Science》 2022年第5期177-195,共19页
Vibratory stimulation but also motor imagery and action observation can induce corticomotor modulation, as a bottom-up stimulus and top-down stimuli, respectively. However, it remains unknown whether the combination o... Vibratory stimulation but also motor imagery and action observation can induce corticomotor modulation, as a bottom-up stimulus and top-down stimuli, respectively. However, it remains unknown whether the combination of motor imagery, action observation, and vibratory stimulation can effectively increase corticomotor excitability. This study aimed to investigate the effect of motor imagery and/or action observation, in the presence or absence of vibratory stimulation, on the corticomotor excitability of healthy young adults. Vibratory stimulation was provided to the palm of the right hand. Action observation consisted in viewing a movie of someone else’s finger flexion and extension movements. The imagery condition required the participants to imagine they were moving their fingers while viewing the movie and attempting to move their fingers in accordance with the movie. Eleven right-handed healthy young adults were asked to perform six conditions randomly: 1) vibratory stimulation, imagery, and action observation, 2) vibratory stimulation and action observation, 3) vibratory stimulation and viewing of a blank screen, 4) imagery and action observation, 5) action observation, and 6) viewing of a blank screen. Single-pulse transcranial magnetic stimulation was conducted to assess corticomotor excitability and the peak-to-peak amplitude of the motor evoked potentials. The results showed that vibratory stimulation increases corticospinal excitability. The findings further revealed that performing motor imagery while viewing finger movement is more effective at inducing an augmentation of corticomotor excitability compared to action observation alone. Thus, the combination of motor imagery, action observation, and vibratory stimulation can effectively augment corticomotor excitability. 展开更多
关键词 motor evoked Potential Transcranial Magnetic Stimulation Vibratory Stimulation motor Imagery Action Observation
下载PDF
Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury 被引量:2
8
作者 Jian Zhang Ren-Jie Wang +8 位作者 Miao Chen Xiao-Yin Liu Ke Ma Hui-You Xu Wu-Sheng Deng Yi-Chao Ye Wei-Xin Li Xu-Yi Chen Hong-Tao Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第6期1068-1077,共10页
One reason for the poor therapeutic effects of stem cell transplantation in traumatic brain injury is that exogenous neural stem cells cannot effectively migrate to the local injury site,resulting in poor adhesion and... One reason for the poor therapeutic effects of stem cell transplantation in traumatic brain injury is that exogenous neural stem cells cannot effectively migrate to the local injury site,resulting in poor adhesion and proliferation of neural stem cells at the injured area.To enhance the targeted delivery of exogenous stem cells to the injury site,cell therapy combined with neural tissue engineering technology is expected to become a new strategy for treating traumatic brain injury.Collagen/heparan sulfate porous scaffolds,prepared using a freeze-drying method,have stable physical and chemical properties.These scaffolds also have good cell biocompatibility because of their high porosity,which is suitable for the proliferation and migration of neural stem cells.In the present study,collagen/heparan sulfate porous scaffolds loaded with neural stem cells were used to treat a rat model of traumatic brain injury,which was established using the controlled cortical impact method.At 2 months after the implantation of collagen/heparan sulfate porous scaffolds loaded with neural stem cells,there was significantly improved regeneration of neurons,nerve fibers,synapses,and myelin sheaths in the injured brain tissue.Furthermore,brain edema and cell apoptosis were significantly reduced,and rat motor and cognitive functions were markedly recovered.These findings suggest that the novel collagen/heparan sulfate porous scaffold loaded with neural stem cells can improve neurological function in a rat model of traumatic brain injury.This study was approved by the Institutional Ethics Committee of Characteristic Medical Center of Chinese People’s Armed Police Force,China(approval No.2017-0007.2)on February 10,2019. 展开更多
关键词 COLLAGEN heparan sulfate INJURY neural stem cells REGENERATION REPAIR SCAFFOLD traumatic brain injury morris water maze motor evoked potential synapses myelin sheaths
下载PDF
脊柱矫形术中神经监测研究进展
9
作者 庞圣丁 思永玉 +2 位作者 欧阳杰 陈莹 周臣 《中文科技期刊数据库(文摘版)医药卫生》 2021年第10期0305-0308,共4页
脊柱侧凸矫形手术是治疗脊柱侧凸畸形最常用的治疗方式之一,而术后神经功能缺损是脊柱侧凸手术术后最严重的并发症。针对这种难以承受的风险,自上世纪以来,临床上陆续出现了很多监测检查神经功能完整性的方法,如术中唤醒试验、肌电图、... 脊柱侧凸矫形手术是治疗脊柱侧凸畸形最常用的治疗方式之一,而术后神经功能缺损是脊柱侧凸手术术后最严重的并发症。针对这种难以承受的风险,自上世纪以来,临床上陆续出现了很多监测检查神经功能完整性的方法,如术中唤醒试验、肌电图、体感诱发电位、运动诱发电位等。近年来,术中多模式结合的神经监测方案被逐渐推广和使用,其特异性及准确率较单一神经监测方式有再一次提升。本文通过对多种术中神经电生理监测技术原理、优劣势、影响因素、准确性等进行多方面介绍,旨在指导临床医师在不同病例中选择最佳监测手段。 展开更多
关键词 脊柱侧凸(Scoliosis) 神经监测(Neurophysiological Monitoring) 诱发电位 运动(evoked potentials motor)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部