BACKGROUND: Sodium valproate (VPA) is used to be an effective anti-epileptic drug. VPA possesses the characteristics of penetrating rapidly through the blood-brain barrier (BBB) and increasing levels of Bcl-2 and grow...BACKGROUND: Sodium valproate (VPA) is used to be an effective anti-epileptic drug. VPA possesses the characteristics of penetrating rapidly through the blood-brain barrier (BBB) and increasing levels of Bcl-2 and growth cone-associated protein (GAP) 43 in spinal cord. OBJECTIVE: To observe the effect of VPA on Bcl-2 expression and motor neuronal apoptosis in spinal cord of rats following sciatic nerve transection. DESIGN: Randomized controlled experiment. SETTING: Department of Hand Surgery and Microsurgery, Wuhan Puai Hospital. MATERIALS: A total of 30 male healthy SD rats of clean grade and with the body mass of 180-220 g were provided by Experimental Animal Center of Medical College of Wuhan University. Sodium Valproate Tablets were purchases from Hengrui Pharmaceutical Factory, Jiangsu. METHODS: The experiment was performed in the Central Laboratory of Wuhan Puai Hospital and Medical College of Wuhan University from February to May 2006. Totally 30 rats were randomly divided into two groups: treatment group (n =15) and model group (n =15). Longitudinal incision along backside of right hind limbs of rats was made to expose sciatic nerves, which were sharply transected 1 cm distal to the inferior margin of piriform muscle after nerve liberation under operation microscope to establish sciatic nerve injury rat models. Sodium Valproate Tablets were pulverized and diluted into 50 g/L suspension with saline. On the day of operation, the rats in the treatment group received 6 mL/kg VPA suspension by gastric perfusion, once a day, whereas model group received 10 mL/kg saline by gastric perfusion, once a day. L4-6 spinal cords were obtained at days 1, 4, 7, 14 and 28 after operation, respectively. Terminal deoxyribonucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) technique and immunohistochemical method (SP method) were used to detect absorbance (A) of neurons with positive Bcl-2 expression. Apoptotic rate of cells (number of apoptotic cells/total number of cells×100%) was calculated. MAIN OUTCOME MEASURES: A value of neurons with positive Bcl-2 expression and apoptotic rate in spinal cord of rats in the two groups. RESULTS: A total of 30 SD rats were involved in the result analysis. ①expression of positive Bcl-2 neurons: A value of positive Bcl-2 neurons were 0.71±0.02, 0.86±0.04, 1.02±0.06 at days 4, 7 and 14, respectively after operation in the treatment group, which were obviously higher than those in the model group (0.62±0.03, 0.71±0.05, 0.89±0.04, t = 3.10-4.50, P < 0.05). ②apoptotic result of motor neurons: Apoptotic rate of motor neurons in spinal cord was (6.91±0.89)% and (15.12±2.34)% at days 7 and 14 in the treatment group, which was significantly lower than those in the model group [(9.45±1.61)%, (19.35±0.92)%, t = 2.39, 3.03. P < 0.05]. CONCLUSION: VPA can increase expression of Bcl-2 in spinal cord and reduce neuronal apoptosis in rats following sciatic nerve injury, and has protective effect on motor neuron in spinal cord of rats.展开更多
Although some patients have successful peripheral nerve regeneration,a poor recovery of hand function often occurs after peripheral nerve injury.It is believed that the capability of brain plasticity is crucial for th...Although some patients have successful peripheral nerve regeneration,a poor recovery of hand function often occurs after peripheral nerve injury.It is believed that the capability of brain plasticity is crucial for the recovery of hand function.The supplementary motor area may play a key role in brain remodeling after peripheral nerve injury.In this study,we explored the activation mode of the supplementary motor area during a motor imagery task.We investigated the plasticity of the central nervous system after brachial plexus injury,using the motor imagery task.Results from functional magnetic resonance imaging showed that after brachial plexus injury,the motor imagery task for the affected limbs of the patients triggered no obvious activation of bilateral supplementary motor areas.This result indicates that it is difficult to excite the supplementary motor areas of brachial plexus injury patients during a motor imagery task,thereby impacting brain remodeling.Deactivation of the supplementary motor area is likely to be a serious problem for brachial plexus injury patients in terms of preparing,initiating and executing certain movements,which may be partly responsible for the unsatisfactory clinical recovery of hand function.展开更多
The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peri...The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peripheral nerve is still unknown. This study explored the problem in a femoral nerve section model in rats. L1 and semaphorin 3A m RNA and protein expressions were measured over the 4-week recovery period. Quantitative polymerase chain reaction showed that nerve cell adhesion molecule L1 expression was higher in the sensory nerves than in motor nerves at 2 weeks after injury, but vice versa for the expression of semaphorin 3A. Western blot assay results demonstrated that nerve cell adhesion molecule L1 expression was higher in motor nerves than in the sensory nerves at the proximal end after injury, but its expression was greater in the sensory nerves at 2 weeks. Semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 3 days and 1 week after injury. Nerve cell adhesion molecule L1 and semaphorin 3A expressions at the distal end were higher in the motor nerves than in the sensory nerves at 3 days, 1 and 2 weeks. Immunohistochemical staining results showed that nerve cell adhesion molecule L1 expression at the proximal end was greater in the sensory nerves than in the motor nerves; semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 2 weeks after injury. Taken together, these results indicated that nerve cell adhesion molecules L1 and semaphorin 3A exhibited different expression patterns at the proximal and distal ends of sensory and motor nerves, and play a coordinating role in neural chemotaxis regeneration.展开更多
Although several surgical procedures exist for treating cubital tunnel syndrome, the best surgical option remains controversial. To evaluate the efficacy of anterior subcutaneous transposition of the ulnar nerve in pa...Although several surgical procedures exist for treating cubital tunnel syndrome, the best surgical option remains controversial. To evaluate the efficacy of anterior subcutaneous transposition of the ulnar nerve in patients with moderate to severe cubital tunnel syndrome and to analyze prognostic factors, we retrospectively reviewed 62 patients(65 elbows) diagnosed with cubital tunnel syndrome who underwent anterior subcutaneous transposition. Preoperatively, the initial severity of the disease was evaluated using the Mc Gowan scale as modified by Goldberg: 18 patients(28%) had grade IIA neuropathy, 20(31%) had grade IIB, and 27(42%) had grade III. Postoperatively, according to the Wilson & Krout criteria, treatment outcomes were excellent in 38 patients(58%), good in 16(25%), fair in 7(11%), and poor in 4(6%), with an excellent and good rate of 83%. A negative correlation was found between the preoperative Mc Gowan grade and the postoperative Wilson & Krout score. The patients having fair and poor treatment outcomes had more advanced age, lower nerve conduction velocity, and lower action potential amplitude compared with those having excellent and good treatment outcomes. These results suggest that anterior subcutaneous transposition of the ulnar nerve is effective and safe for the treatment of moderate to severe cubital tunnel syndrome, and initial severity, advancing age, and electrophysiological parameters can affect treatment outcome.展开更多
文摘BACKGROUND: Sodium valproate (VPA) is used to be an effective anti-epileptic drug. VPA possesses the characteristics of penetrating rapidly through the blood-brain barrier (BBB) and increasing levels of Bcl-2 and growth cone-associated protein (GAP) 43 in spinal cord. OBJECTIVE: To observe the effect of VPA on Bcl-2 expression and motor neuronal apoptosis in spinal cord of rats following sciatic nerve transection. DESIGN: Randomized controlled experiment. SETTING: Department of Hand Surgery and Microsurgery, Wuhan Puai Hospital. MATERIALS: A total of 30 male healthy SD rats of clean grade and with the body mass of 180-220 g were provided by Experimental Animal Center of Medical College of Wuhan University. Sodium Valproate Tablets were purchases from Hengrui Pharmaceutical Factory, Jiangsu. METHODS: The experiment was performed in the Central Laboratory of Wuhan Puai Hospital and Medical College of Wuhan University from February to May 2006. Totally 30 rats were randomly divided into two groups: treatment group (n =15) and model group (n =15). Longitudinal incision along backside of right hind limbs of rats was made to expose sciatic nerves, which were sharply transected 1 cm distal to the inferior margin of piriform muscle after nerve liberation under operation microscope to establish sciatic nerve injury rat models. Sodium Valproate Tablets were pulverized and diluted into 50 g/L suspension with saline. On the day of operation, the rats in the treatment group received 6 mL/kg VPA suspension by gastric perfusion, once a day, whereas model group received 10 mL/kg saline by gastric perfusion, once a day. L4-6 spinal cords were obtained at days 1, 4, 7, 14 and 28 after operation, respectively. Terminal deoxyribonucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) technique and immunohistochemical method (SP method) were used to detect absorbance (A) of neurons with positive Bcl-2 expression. Apoptotic rate of cells (number of apoptotic cells/total number of cells×100%) was calculated. MAIN OUTCOME MEASURES: A value of neurons with positive Bcl-2 expression and apoptotic rate in spinal cord of rats in the two groups. RESULTS: A total of 30 SD rats were involved in the result analysis. ①expression of positive Bcl-2 neurons: A value of positive Bcl-2 neurons were 0.71±0.02, 0.86±0.04, 1.02±0.06 at days 4, 7 and 14, respectively after operation in the treatment group, which were obviously higher than those in the model group (0.62±0.03, 0.71±0.05, 0.89±0.04, t = 3.10-4.50, P < 0.05). ②apoptotic result of motor neurons: Apoptotic rate of motor neurons in spinal cord was (6.91±0.89)% and (15.12±2.34)% at days 7 and 14 in the treatment group, which was significantly lower than those in the model group [(9.45±1.61)%, (19.35±0.92)%, t = 2.39, 3.03. P < 0.05]. CONCLUSION: VPA can increase expression of Bcl-2 in spinal cord and reduce neuronal apoptosis in rats following sciatic nerve injury, and has protective effect on motor neuron in spinal cord of rats.
基金supported by the Youth Researcher Foundation of Shanghai Health Development Planning Commission,No.20124319
文摘Although some patients have successful peripheral nerve regeneration,a poor recovery of hand function often occurs after peripheral nerve injury.It is believed that the capability of brain plasticity is crucial for the recovery of hand function.The supplementary motor area may play a key role in brain remodeling after peripheral nerve injury.In this study,we explored the activation mode of the supplementary motor area during a motor imagery task.We investigated the plasticity of the central nervous system after brachial plexus injury,using the motor imagery task.Results from functional magnetic resonance imaging showed that after brachial plexus injury,the motor imagery task for the affected limbs of the patients triggered no obvious activation of bilateral supplementary motor areas.This result indicates that it is difficult to excite the supplementary motor areas of brachial plexus injury patients during a motor imagery task,thereby impacting brain remodeling.Deactivation of the supplementary motor area is likely to be a serious problem for brachial plexus injury patients in terms of preparing,initiating and executing certain movements,which may be partly responsible for the unsatisfactory clinical recovery of hand function.
基金supported by the National Natural Science Foundation of China,No.81371389,31500927,31300942,81201017the Collegiate Natural Science Foundation of Jiangsu Province of China,No.13KJB180018the Natural Science Foundation of Nantong University of China,No.14ZY013
文摘The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peripheral nerve is still unknown. This study explored the problem in a femoral nerve section model in rats. L1 and semaphorin 3A m RNA and protein expressions were measured over the 4-week recovery period. Quantitative polymerase chain reaction showed that nerve cell adhesion molecule L1 expression was higher in the sensory nerves than in motor nerves at 2 weeks after injury, but vice versa for the expression of semaphorin 3A. Western blot assay results demonstrated that nerve cell adhesion molecule L1 expression was higher in motor nerves than in the sensory nerves at the proximal end after injury, but its expression was greater in the sensory nerves at 2 weeks. Semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 3 days and 1 week after injury. Nerve cell adhesion molecule L1 and semaphorin 3A expressions at the distal end were higher in the motor nerves than in the sensory nerves at 3 days, 1 and 2 weeks. Immunohistochemical staining results showed that nerve cell adhesion molecule L1 expression at the proximal end was greater in the sensory nerves than in the motor nerves; semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 2 weeks after injury. Taken together, these results indicated that nerve cell adhesion molecules L1 and semaphorin 3A exhibited different expression patterns at the proximal and distal ends of sensory and motor nerves, and play a coordinating role in neural chemotaxis regeneration.
基金supported by grants from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542200a grant from Innovation Program of Ministry of Education,No.IRT1201+1 种基金the National Natural Science Foundation of China,No.31271284,31171150,81171146,30971526,31100860,31040043,31371210Program for New Century Excellent Talents in University of Ministry of Education of China,No.BMU20110270
文摘Although several surgical procedures exist for treating cubital tunnel syndrome, the best surgical option remains controversial. To evaluate the efficacy of anterior subcutaneous transposition of the ulnar nerve in patients with moderate to severe cubital tunnel syndrome and to analyze prognostic factors, we retrospectively reviewed 62 patients(65 elbows) diagnosed with cubital tunnel syndrome who underwent anterior subcutaneous transposition. Preoperatively, the initial severity of the disease was evaluated using the Mc Gowan scale as modified by Goldberg: 18 patients(28%) had grade IIA neuropathy, 20(31%) had grade IIB, and 27(42%) had grade III. Postoperatively, according to the Wilson & Krout criteria, treatment outcomes were excellent in 38 patients(58%), good in 16(25%), fair in 7(11%), and poor in 4(6%), with an excellent and good rate of 83%. A negative correlation was found between the preoperative Mc Gowan grade and the postoperative Wilson & Krout score. The patients having fair and poor treatment outcomes had more advanced age, lower nerve conduction velocity, and lower action potential amplitude compared with those having excellent and good treatment outcomes. These results suggest that anterior subcutaneous transposition of the ulnar nerve is effective and safe for the treatment of moderate to severe cubital tunnel syndrome, and initial severity, advancing age, and electrophysiological parameters can affect treatment outcome.