期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Application of sensory and motor training in AIDET communication mode in patients after knee arthroplasty
1
作者 Di Tong Jing Zhang Xin-Ying Liang 《World Journal of Clinical Cases》 SCIE 2024年第25期5720-5728,共9页
BACKGROUND Patients with knee arthroplasty often have problems such as slow recovery of knee function,which may cause negative emotions and affect their postoperative rehabilitation.The application of sensory and moto... BACKGROUND Patients with knee arthroplasty often have problems such as slow recovery of knee function,which may cause negative emotions and affect their postoperative rehabilitation.The application of sensory and motor training in the Acknowledge,Introduce,Duration,Evaluation,Thank You(AIDET)communication mode in patients after knee arthroplasty can provide reference for the selection of postoperative rehabilitation training measures.AIM To explore the sensory and motor training effects in AIDET communication mode on knee function recovery and resilience of patients after knee arthroplasty.METHODS One hundred patients who underwent knee arthroplasty at our hospital between January 2022 and January 2024 were randomly divided into two groups.The control group(n=50)received routine rehabilitation training.In the observation group(n=50),the AIDET communication mode was used to perform sensory and motor training,in addition to routine rehabilitation training.The rehabilitation training was administered for 8 weeks.After surgery,knee function,balance ability,walking ability,proprioception,and resilience were compared between the two groups.RESULTS The New York Hospital for Special Surgery knee scores of the observation group at the time of discharge and 8 weeks after intervention were(65.23±6.84,84.53±5.27),which was higher than those of the control group(61.03±7.15,74.92±6.52)(P<0.05).The balance ability of the observation group at the time of discharge and 8 weeks after the intervention was higher than that of the control group,the time of time up to go test was shorter than that of the control group,and proprioceptive function was higher than that of the control group(P<0.05).The resilience level in the observation group after the intervention was higher than that in the control group(P<0.05).CONCLUSION Sensory and motor training in AIDET communication mode promotes knee function recovery of patients after knee arthroplasty,improves their limb walking ability and balance function,and increases their resilience level. 展开更多
关键词 AIDET communication mode Sensory and motor training Knee arthroplasty Knee function RESILIENCE
下载PDF
Analyzing the Combination Effects of Repetitive Transcranial Magnetic Stimulation and Motor Control Training on Balance Function and Gait in Patients with Stroke-Induced Hemiplegia
2
作者 Xiaoqing Ma Zhen Ma +2 位作者 Ye Xu Meng Han Hui Yan 《Proceedings of Anticancer Research》 2024年第1期54-60,共7页
Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’bala... Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’balance function and gait.Methods:Fifty-two cases of hemiplegic stroke patients were randomly divided into two groups,26 in the control group and 26 in the observation group,using computer-generated random grouping.All participants underwent conventional treatment and rehabilitation training.In addition to these,the control group received repetitive transcranial magnetic pseudo-stimulation therapy+motor control training,while the observation group received repetitive transcranial magnetic stimulation therapy+motor control training.The balance function and gait parameters of both groups were compared before and after the interventions and assessed the satisfaction of the interventions in both groups.Results:Before the invention,there were no significant differences in balance function scores and each gait parameter between the two groups(P>0.05).However,after the intervention,the observation group showed higher balance function scores compared to the control group(P<0.05).The observation group also exhibited higher step speed and step frequency,longer step length,and a higher overall satisfaction level with the intervention compared to the control group(P<0.05).Conclusion:The combination of repetitive transcranial magnetic stimulation and motor control training in the treatment of stroke-induced hemiplegia has demonstrated positive effects.It not only improves the patient’s balance function and gait but also contributes to overall physical rehabilitation. 展开更多
关键词 Stroke-induced hemiplegia Repetitive transcranial magnetic stimulation motor control training Balance function GAIT
下载PDF
ACUPUNCTURE COMBINED WITH LANGUAGE TRAINING FOR TREATMENT OF MOTOR APHASIA CAUSED BY ISCHEMIC APOPLEXY 被引量:2
3
作者 罗卫平 黄红缨 朱洁艳 《World Journal of Acupuncture-Moxibustion》 2008年第4期9-16,22,共9页
Objective To observe therapeutic effects of acupuncture combined with language training on aphasia induced by ischemic apoplexy and investigate the mechanisms. Methods 60 patients were randomly divided into a treatmen... Objective To observe therapeutic effects of acupuncture combined with language training on aphasia induced by ischemic apoplexy and investigate the mechanisms. Methods 60 patients were randomly divided into a treatment group treated by acupuncture associated with language training and a control group treated by simple language training. Tongue-acupuncture was applied as the main therapy, and language training included speech organ training, mouth-shape and voice training, spoken language expression training and practical communication ability training. According to Aphosio Bottery of Chinese (ABC), language ex- amination evaluation was made, and event related potential (P300) was detected before and after treatment. Results The therapeutic effect in the treatment group was significantly better than that in the control group (P〈O. 05), and the scores of ABC items including information content, speech fluency, repetition, vocabula- ry denomination, color naming, response denomination, confirmation or negation, acoustic recognition and carrying out instruction in the treatment group were obviously higher than those in the control group (P〈0.05). After one course of treatment, the latencies of N2 and P3 waves in P300 were significantly short- ened and the amplitude of P3 was significantly elevated in the treatment group, compared with those in the control group (P〈0.05). Conclusion Acupuncture combined with language training provided remarkable therapeutic effects in treating cerebral infarction-induced motor aphasia, and it was better than simple lan- guage training. The results of enhancing of the ABC scores including information content, speech fluency, repetition, vocabulary denomination, color naming, response denomination, confirmation or negation, acous- tic recognition and carrying out instruction, and shortening of the latencies of N2 and P3 waves in P300 and ele- vation of P3 amplitude may be taken as the indices for evaluating and anticipating clinical therapeutic effects of the therapy for treating the disease, which may also be some of the mechanisms. 展开更多
关键词 Acupuncture Language training Cerebral Infarction motor Aphasia Aphasia Battery of Chinese (ABC) Event Related Potential (P300)
下载PDF
Botulinum toxin type A plus rehabilitative training for improving the motor function of the upper limbs and activities of daily life in patients with stroke and brain injury 被引量:1
4
作者 Fei Guo Wei Yue +2 位作者 Li Ren Yumiao Zhang Jing Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第9期859-861,共3页
BACKGROUND:Botulinum toxin type A(BTX-A)is mostly to be used to treat various diseases of motor disorders,whereas its effect on muscle spasm after stroke and brain injury needs further observation.OBJECTIVE:To observe... BACKGROUND:Botulinum toxin type A(BTX-A)is mostly to be used to treat various diseases of motor disorders,whereas its effect on muscle spasm after stroke and brain injury needs further observation.OBJECTIVE:To observe the effect of BTX-A plus rehabilitative training on treating muscle spasm after stroke and brain injury.DESIGN:A randomized controlled observation.SETTINGS:Department of Rehabilitation,Department of Neurology and Department of Neurosurgery,the Second Hospital of Hebei Medical University.PARTICIPANTS:Sixty inpatients with brain injury and stroke were selected from the Department of Rehabilitation,Department of Neurology and Department of Neurosurgery,the Second Hospital of Hebei Medical University from January 2001 to August 2006.They were all confirmed by CT and MRI,and had obvious increase of spastic muscle strength in upper limbs,their Ashworth grades were grade 2 or above.The patients were randomly divided into treatment group(n=30)and control group(n=30).METHODS:①Patients in the treatment group undertook comprehensive rehabilitative trainings,and they were administrated with domestic BTX-A,which was provided by Lanzhou Institute of Biological Products,Ministry of Health(S10970037),and the muscles of flexion spasm were selected for upper limbs,20-25 IU for each site.②Patients in the treatment group were assessed before injection and at 1 and 2 weeks,1 and 3 months after injection respectively,and those in the control group were assessed at corresponding time points.The recovery of muscle spasm was assessed by modified Ashworth scale(MAS,grade 0-Ⅳ;Grade 0 for without increase of muscle strength;GradeⅣfor rigidity at passive flexion and extension);The recovery of motor function of the upper limbs was evaluated with Fugl-Meyer Assessment(FMA,total score was 226 points,including 100 for exercise,14 for balance,24 for sense,44 for joint motion,44 for pain and 66 for upper limb);The ADL were evaluated with Barthel index,the total score was 100 points,60 for mild dysfunction,60-41 for moderate dysfunction,<40 for severe dysfunction).MAIN OUTCOME MEASURES:Changes of MAS grade,FMA scores and Barthel index before and after BTX-A injection.RESULTS:All the 60 patients with brain injury and stroke were involved in the analysis of results.①FMA scores of upper limbs:The FMA score in the treatment group at 2 weeks after treatment was higher than that before treatment[(14.98±10.14),(13.10±9.28)points,P<0.05],whereas there was no significant difference at corresponding time point in the control group.The FMA scores at 1 and 3 months in the treatment group[(23.36±10.69),(35.36±11.36)points]were higher than those in the control group[(20.55±10.22),(30.33±10.96)points,P<0.01].②MAS grades of upper limbs:There were obviously fewer cases of gradeⅢin MAS at 2 weeks after treatment than before treatment in the treatment group(0,9 cases,P<0.05),whereas there was no obvious difference in the control group.There were obviously fewer cases of gradeⅢin MAS at 2 weeks and 1 month after treatment in the treatment group(0,0 case)than the control group(5,2 cases,P<0.01).③Barthel index of upper limbs:The Barthel index at 2 weeks after treatment was higher than that before treatment in the treatment group[(30.36±22.25),(28.22±26.21)points,P<0.05],whereas there was no significant difference in the control group.The Barthel indexes at 1 and 3 months after treatment in the treatment group were obviously higher than those in the control group[(20.55±10.22),(30.33±10.96)points,P<0.01].CONCLUSION:BTX-A has obvious efficacy on decreasing muscle tension after stroke and brain injury,and relieving muscle spasm;Meanwhile,the combination with rehabilitative training can effectively ameliorate the motor function of upper limbs and ADL of the patients. 展开更多
关键词 Botulinum toxin type A plus rehabilitative training for improving the motor function of the upper limbs and activities of daily life in patients with stroke and brain injury TYPE
下载PDF
Passive activity enhances residual control ability in patients with complete spinal cord injury
5
作者 Yanqing Xiao Mingming Gao +6 位作者 Zejia He Jia Zheng Hongming Bai Jia-Sheng Rao Guiyun Song Wei Song Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS 2025年第8期2337-2347,共11页
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these... Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury. 展开更多
关键词 complete spinal cord injury cycle training epidural electrical stimulation motor training passive activity physiological state spinal cord circuit surface electromyography volitional control task
下载PDF
Axonal remodeling in the corticospinal tract after stroke: how does rehabilitative training modulate it? 被引量:9
6
作者 Naohiko Okabe Kazuhiko Narita Osamu Miyamoto 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期185-192,共8页
Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstru... Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals. 展开更多
关键词 stroke rehabilitative training axonal remodeling corticospinal tract motor map reorganization motor system neurotrophic factor functional compensation neural activity growth promoting signal growth inhibitory signal task-specific training
下载PDF
Can coordination variability identify performance factors and skill level in competitive sport? The case of race walking 被引量:2
7
作者 Dario Cazzola Gaspare Pavei Ezio Preatoni 《Journal of Sport and Health Science》 SCIE 2016年第1期35-43,共9页
Background:Marginal changes in the execution of competitive sports movements can represent a significant change for performance success.However,such differences may emerge only at certain execution intensities and are... Background:Marginal changes in the execution of competitive sports movements can represent a significant change for performance success.However,such differences may emerge only at certain execution intensities and are not easily detectable through conventional biomechanical techniques.This study aimed to investigate if and how competition standard and progression speed affect race walking kinematics from both a conventional and a coordination variability perspective.Methods:Fifteen experienced athletes divided into three groups(elite,international,and national) were studied while race walking on a treadmill at two different speeds(12.0 and 15.5 km/h).Basic gait parameters,the angular displacement of the pelvis and lower limbs,and the variability in continuous relative phase between six different joint couplings were analyzed.Results:Most of the spatio-temporal,kinematic,and coordination variability measures proved sensitive to the change in speed.Conversely,non-linear dynamics measures highlighted differences between athletes of different competition standard when conventional analytical tools were not able to discriminate between different skill levels.Continuous relative phase variability was higher for national level athletes than international and elite in two couplings(pelvis obliquity—hip flex/extension and pelvis rotation—ankle dorsi/plantarflexion) and gait phases(early stance for the first coupling,propulsive phase for the second) that are deemed fundamental for correct technique and performance.Conclusion:Measures of coordination variability showed to be a more sensitive tool for the fine detection of skill-dependent factors in competitive race walking,and showed good potential for being integrated in the assessment and monitoring of sports motor abilities. 展开更多
关键词 Biomechanics Gait Joint coupling motor control Sports technique training
下载PDF
STAT3 signal that mediates the neural plasticity is involved in willed-movement training in focal ischemic rats
8
作者 Qing-ping TANG Qin SHEN +7 位作者 Li-xiang WU Xiang-ling FENG Hui LIU Bei WU Xiao-song HUANG Gai-qing WANG Zhong-hao LI Zun-jing LIU 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2016年第7期493-502,共10页
Willed-movement training has been demonstrated to be a promising approach to increase motor per- formance and neural plasticity in ischemic rats. However, little is known regarding the molecular signals that are in- v... Willed-movement training has been demonstrated to be a promising approach to increase motor per- formance and neural plasticity in ischemic rats. However, little is known regarding the molecular signals that are in- volved in neural plasticity following willed-movement training. To investigate the potential signals related to neural plasticity following willed-movement training, littermate rats were randomly assigned into three groups: middle cerebral artery occlusion, environmental modification, and willed-movement training. The infarct volume was measured 18 d after occlusion of the right middle cerebral artery. Reverse transcription-polymerase chain reaction (PCR) and im- munofluorescence staining were used to detect the changes in the signal transducer and activator of transcription 3 (STAT3) mRNA and protein, respectively. A chromatin immunoprecipitation was used to investigate whether STAT3 bound to plasticity-related genes, such as brain-derived neurotrophic factor (BDNF), synaptophysin, and protein in- teracting with C kinase 1 (PICK1). In this study, we demonstrated that STAT3 mRNA and protein were markedly increased following 15-d willed-movement training in the ischemic hemispheres of the treated rats. STAT3 bound to BDNF, PICK1, and synaptophysin promoters in the neocortical cells of rats. These data suggest that the increased STAT3 levels after willed-movement training might play critical roles in the neural plasticity by directly regulating plasticity-related genes. 展开更多
关键词 motor training Signal transducer and activator of transcription 3 (STAT3) Brain-derived neurotrophicfactor (BDNF) Protein interacting with C kinase 1 (PICK1) Neural plasticity
原文传递
Loss of monocarboxylate transporter 1 aggravates white matter injury after experimental subarachnoid hemorrhage in rats 被引量:1
9
作者 Xin Wu Zongqi Wang +6 位作者 Haiying Li Xueshun Xie Jiang Wu Haitao Shen Xiang Li Zhong Wang Gang Chen 《Frontiers of Medicine》 SCIE CSCD 2021年第6期887-902,共16页
Monocarboxylic acid transporter 1(MCT1)maintains axonal function by transferring lactic acid from oligodendrocytes to axons.Subarachnoid hemorrhage(SAH)induces white matter injury,but the involvement of MCT1 is unclea... Monocarboxylic acid transporter 1(MCT1)maintains axonal function by transferring lactic acid from oligodendrocytes to axons.Subarachnoid hemorrhage(SAH)induces white matter injury,but the involvement of MCT1 is unclear.In this study,the SAH model of adult male Sprague-Dawley rats was used to explore the role of MCT1 in white matter injury after SAH.At 48 h after SAH,oligodendrocyte MCT1 was significantly reduced,and the exogenous overexpression of MCT1 significantly improved white matter integrity and long-term cognitive function.Motor training after SAH significantly increased the number of ITPR2+SOX10+oligodendrocytes and upregulated the level of MCT1,which was positively correlated with the behavioral ability of rats.In addition,miR-29b and miR-124 levels were significantly increased in SAH rats compared with non-SAH rats.Further intervention experiments showed that miR-29b and miR-124 could negatively regulate the level of MCT1.This study confirmed that the loss of MCT1 may be one of the mechanisms of white matter damage after SAH and may be caused by the negative regulation of miR-29b and miR-124.MCT1 may be involved in the neurological improvement of rehabilitation training after SAH. 展开更多
关键词 MICRORNAS monocarboxylate transporter 1 motor training subarachnoid hemorrhage white matter injury
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部