期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Zero-Sequence Current Suppression Strategy for Open-End Winding Permanent Magnet Synchronous Motor Based on Model Predictive Control
1
作者 刘华山 李杰 姚飞 《Journal of Donghua University(English Edition)》 EI CAS 2020年第4期286-292,共7页
Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the ... Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the common-mode voltage and the back electromotive force(EMF)harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit,and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system.A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM.Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model,the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation.Then zero-sequence loop constraints are established,so as to suppress the zero-sequence current.In the end,the control strategy proposed in this paper is verified by simulation experiments. 展开更多
关键词 open-end winding permanent magnet synchronous motor(OW-PMSM) zero-sequence current HARMONIC model predictive current control common-mode voltage
下载PDF
The time and space characteristics of magnetomotive force in the cascaded linear induction motor 被引量:2
2
作者 Dajing Zhou Jiaqing Ma +3 位作者 Lifeng Zhao Xiao Wan Yong Zhang Yong Zhao 《Journal of Modern Transportation》 2013年第3期194-199,共6页
To choose a reasonable mode of three-phase winding for the improvement of the operating efficiency of cascaded linear induction motor, the time and space characteristics of magnetomotive force were investigated. The i... To choose a reasonable mode of three-phase winding for the improvement of the operating efficiency of cascaded linear induction motor, the time and space characteristics of magnetomotive force were investigated. The ideal model of the cascaded linear induction motor was built, in which the B and C-phase windings are respectively separated from the A-phase winding by a distance of d and e slots pitch and not overlapped. By changing the values of d and e from 1 to 5, we can obtain 20 different modes of three-phase winding with the different combinations of d and e. Then, the air-gap magnetomotive forces of A-, B-, and C-phase windings were calculated by the magnetomotive force theory. According to the transient superposition of magnetomotive forces of A-, B-, and C-phase windings, the theoretical and simulated synthetic fundamental magnetomotive forces under 20 different arrangement modes were obtained. The results show that the synthetic magnetomotive force with d = 2 and e = 4 is close to forward sinusoidal traveling wave and the synthetic magnetomotive force with d = 4 and e = 2 is close to backward sinusoidal traveling wave, and their amplitudes and wave velocities are approximately constant and equal. In both cases, the motor could work normally with ahigh efficiency, but under other 18 arrangement modes (d= 1, e=2; d= 1, e=3; d= 1, e=4;...), the synthetic magnetomotive force presents obvious pulse vibration and moves with variable velocity, which means that the motor did not work normally and had high energy loss. 展开更多
关键词 Linear induction motor -Three-phase winding Magnetomotive force
下载PDF
Visualization and Quantitative Evaluation of Eddy Current Loss in Bar-Wound Type Permanent Magnet Synchronous Motor for Mild-Hybrid Vehicles 被引量:3
3
作者 Masahiro Aoyama Jianing Deng 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第3期269-278,共10页
This paper describes the conductor eddy current loss that occurs in a permanent magnet type synchronous motor with a distributed winding stator using a rectangular copper wire designed for mild hybrid system applicati... This paper describes the conductor eddy current loss that occurs in a permanent magnet type synchronous motor with a distributed winding stator using a rectangular copper wire designed for mild hybrid system applications for small vehicles.Compared with the conventional round wire inserter method,the space factor can be improved and the coil-end length can be shortened by applying a so-called hairpin windings using a pre-formed into hairpin shape of bar conductor,and as a result,DC current resistance of the armature winding can be reduced.However,since the conductor cross-sectional area tends to increases,the conductor eddy current loss generated by the space harmonics linkage becomes too large to ignore.In order to study the reduction of the conductor eddy current loss,it is important to visualize the spatial leakage flux distribution which causes loss and finely analyze how the magnetic path is formed.Therefore,analysis of the conductor eddy current loss distribution generated in the bar-wound conductor is performed using the CAE model that faithfully reproduces the coil-end shape of the actual machine.Furthermore,it was qualitatively clarified what ratio of conductor eddy current loss at various driving points.Finally,the results of preliminary study on reduction of conductor eddy current loss are reported. 展开更多
关键词 Conductor eddy current loss hairpin windings type permanent magnet synchronous motor leakage magnetic flux.
下载PDF
New Development in the Performance Improvement Synchronous Motor
4
作者 V. Chandrasekaran D. Nagarajan B. Nagaraj 《Circuits and Systems》 2016年第10期2865-2874,共11页
Synchronous machines are dedicated to the specific application. They are generally employed in rolling mills, pumps, fans, and compressors like reprobating and centrifugal drives, pulp and paper processing, water trea... Synchronous machines are dedicated to the specific application. They are generally employed in rolling mills, pumps, fans, and compressors like reprobating and centrifugal drives, pulp and paper processing, water treatment, mining, and in cement industries. As a synchronous motor, the performance is reduced for the given excitation while the load increases. When operated as synchronous generators, both power loads and lighting loads depend on the output from the armature winding. This paper presents an alternative choice in which by providing an additional winding in the stationary armature, when operated as a Double Winding Synchronous Motor (DWSyM), it becomes possible to operate in maximum power factor by adjusting the loads on both the stator windings. When operated as conventional motor, for the load current of 3.5 A, the efficiency is 55% and power factor is 0.55, for the same excitation when second winding is connected to a load current of 1 A, the efficiency is improved to 77.6% and power factor is improved to 0.66. The main focus of this machine is to improve the performance of the machine for the reduced excitation and minimum load. For the reduced excitation, the performance can be improved by loading both the windings. While operated as Double Winding Synchronous Generator (DWSyG), two stator outputs are available which help to separate the power and lighting circuits. Hence, interruption in the lighting circuit can be limited, this machine can be considered as Twin generator. 展开更多
关键词 Double winding Synchronous motor (DWSyM) Double winding Synchronous Generator (DWSyG) Performance Improvement Energy Conservation Twin Generator
下载PDF
Impact of Motor Stator Winding Faults on Motor Differential-mode Impedance and Mode Transformation
5
作者 Fei Fan Zhenyu Zhao +5 位作者 Huamin Jie Quqin Sun Pengfei Tu Zhou Shu Wensong Wang Kye Yak See 《Chinese Journal of Electrical Engineering》 CSCD 2022年第3期12-21,共10页
Motor impedance and mode transformation have significant effects on the electromagnetic interference(EMI)generated in motor drive systems.Stator winding faults commonly cause motor failure;however,in their early stage... Motor impedance and mode transformation have significant effects on the electromagnetic interference(EMI)generated in motor drive systems.Stator winding faults commonly cause motor failure;however,in their early stages,they may not affect the short-term operation of the motor.To date,EMI noise under the influence of premature stator winding faults has not been adequately studied,particularly the differential-mode(DM)noise due to the common-mode(CM)-to-DM transformation.This study investigates and quantifies the influence of stator winding faults on the motor DM impedance and mode transformation.First,the transmission line model of an induction motor is described based on the scattering(S)parameter measurements of each phase of the motor.It offers the flexibility to emulate different types of stator winding faults at specific locations and various severities,such that the impacts of the faults on the motor DM impedance can be easily estimated.Second,a test setup is proposed to quantify the CM-to-DM transformation due to the stator winding faults.The findings of this study reveal that even the early stages of stator winding faults can result in significant changes in the DM noise. 展开更多
关键词 Differential-mode(DM)impedance DM noise mode transformation motor stator winding faults transmission line model
原文传递
Modulation and Voltage Balancing Control of Dual Five-level ANPC Inverter for Ship Electric Propulsion Systems
6
作者 Xiaohui Xu Xingchi Song +4 位作者 Kui Wang Nianzhou Liu Wenfeng Long Zedong Zheng Yongdong Li 《Chinese Journal of Electrical Engineering》 CSCD 2021年第4期78-92,共15页
Open-end winding motors are used extensively in ship electric propulsion systems,in which medium-voltage high-power inverters are a critical component.To increase the system voltage and power density,a dual five-level... Open-end winding motors are used extensively in ship electric propulsion systems,in which medium-voltage high-power inverters are a critical component.To increase the system voltage and power density,a dual five-level active neutral-point clamped(ANPC)inverter is proposed herein to drive medium-voltage open-end winding motors for ship electric propulsion.Each phase of this inverter comprises two five-level ANPC bridges and all the phases are powered by a common direct-current link.A hybrid modulation method is proposed to control this inverter.The series-connected switches in all the five-level ANPC bridges are operated at the fundamental frequency,and the other switches are controlled with a phase-shifted pulse-width modulation(PWM),which can achieve a natural balance between the neutral-point voltage and flying capacitor voltages in a carrier period.A closed-loop capacitor voltage balancing method based on adjusting the duty ratios of the PWM signals is proposed.The neutral-point voltage and flying capacitor voltages can be controlled independently and balanced without affecting the output phase voltage.Simulation and experimental results are presented to demonstrate the validity of this method. 展开更多
关键词 Multilevel inverter active neutral-point clamped(ANPC) capacitor voltage balance open-end winding motor drive
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部